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BayesTraits is a computer package for performing analyses of trait evolution among groups of 
species for which a phylogeny or sample of phylogenies is available.  It can be applied to the analysis 

of traits that adopt a finite number of discrete states, or to the analysis of continuously varying traits.  

Hypotheses can be tested about models of evolution, about ancestral states and about correlations 

among pairs of traits.   

 

History 

BayesTraits combines a number of computer programs that we have previously made available, 

including MultiState, MultiAns, Discrete and Continuous.  We will increasingly support only this 

package and so users are encouraged to switch to BayesTraits if currently using one of these older 

versions.  The methods in BayesTraits are described in a series of papers that we will refer to 

throughout this manual (see also references at end).  The computer code is all written in C and was 

produced by Dr Andrew Meade. 

 

We would be grateful if you use BayesTraits in your published research if you cite one or more of the 

relevant articles and indicate that the software is available from www.evolution.rdg.ac.uk. 

 

Methods and Approach 

BayesTraits uses Markov chain Monte Carlo (MCMC) methods to derive posterior distributions and 

maximum likelihood (ML) methods to derive point estimates of, log-likelihoods, the parameters of 

statistical models, and the values of traits at ancestral nodes of phylogenies.  The user can select either 

standard or conventional MCMC or reversible-jump MCMC.  In the latter case the Markov chain 

searches the posterior distribution of different models of evolution as well as the posterior distributions 

of the parameters of these models (see below).   

 

BayesTraits can be used with a single phylogenetic tree in which case only uncertainty about model 

parameters is explored, or, it can be applied to suitable samples of trees such that models are estimated 

and hypotheses are tested taking phylogenetic uncertainty into account.   

 

Our BayesPhylogenies package (www.evolution.rdg.ac.uk) can be used to generate posterior 

distributions of phylogenetic trees when a gene-sequence alignment or other data set is available. 

 

BayesTraits makes available several methods: 

 

• BayesMultiState is used to reconstruct how traits that adopt a finite number of discrete states 

evolve on phylogenetic trees.  It is useful for reconstructing ancestral states and for testing 

models of trait evolution.  It can be applied to traits that adopt two or more discrete states (see 

Pagel, M., Meade, A. and Barker, D. 2004. Systematic Biology, 53, 673-684; 

• BayesDiscrete is used to analyse correlated evolution between pairs of discrete binary traits.  

Most commonly the two binary states refer to the presence or absence of some feature, but 

could also include “low” and “high”, or any two distinct features.  Its uses might include tests 

of correlation among behavioural, morphological, genetic or cultural characters (see Pagel, M. 

and Meade, A.  2006. American Naturalist, 167, 808-825.)  Once recent use of BayesDiscrete 

is to test for functional linkage among pairs of genes (Barker, D. and Pagel, M. 2005. PLoS 

Computational Biology, 1, 24-31.  DOI: 10.1371/journal.pcbi.0010003);  

• BayesContinuous is for the analysis of the evolution of continuously varying traits.  It can be 

used to model the evolution of a single trait, to study correlations among pairs of traits, or to 

study the regression of one trait on two or more other traits (see Pagel, M.  1999. Nature, 401, 

877-884). 

  

This manual is designed to show how to use the programs that implement these models.  Detailed 

information about the methods can be found in the papers listed at the end (some are available as pdfs 

on our website).  Syntax and a description of all of the commands in BayesTraits can be found in the 

list of commands in the Appendix to the manual. 

 

THE CONTINUOUS-TIME MARKOV MODELS OF TRAIT EVOLUTION FOR DISCRETE TRAITS 

Multistate and Discrete fit continuous-time Markov models to the discrete character data.  This model 

allows the trait to change from the state it is in at any given moment to any other state over 



infinitesimally small intervals of time.  The rate parameters of the model estimate these transition rates 

(see Pagel, 1994 for further discussion).  The model traverses the tree estimating transition rates and 

the likelihood associated with different states at each node. 

 

The table shows an example of the model of evolution for a trait that can adopt three states, 0,1, and 2.  

The qij are the transition rates among the three states, and these are what the method estimates on the 

tree, based on the distribution of states among the species.  If these rates differ from zero, this indicates 

that they are a significant component of the model.  The main diagonal elements are not estimated but 

are a function of the other values in their row. 

 

Example of the model of evolution for a trait that adopts three states 

 

State 0 1 2 

0 -- q01 q02 

1 q01 -- q12 

2 q20 q21 -- 

 

For a trait that adopts four states, the matrix would have twelve entries, for a binary trait the matrix 

would have just two entries. 

 

Discrete tests for correlated evolution in two binary traits by comparing the fit (log-likelihood) of two 

of these continuous-time Markov models.  One of these is a model in which the two traits evolve 

independently on the tree.  Each trait is described by a 2 × 2 matrix in the same format as the one 

above, but in which the trait adopts just two states, “0” and “1”.  This creates two rate coefficients per 

trait. 

 

The other model, allows the traits to evolve in a correlated fashion such that the rate of change in one 

trait depends upon the background state of the other.  The dependent model can adopt four states, one 

for each combination of the two binary traits (0,0; 0,1; 1,0; 1,1).  It is represented in the program as 

shown below and the transition rates describe all possible changes in one state holding the other 

constant.  The main diagonal elements are estimated from the other values in their row as before.  The 

other diagonal elements are set to zero as the model does not allow ‘dual’ transitions to occur, the logic 

being that these are instantaneous transition rates and the probability of two traits changing at exactly 

the same instant of time is negligible.  Dual transitions are allowed over longer periods of time, 

however.  See Pagel (1994) and Barker and Pagel (2005) for further discussion of this model. 

 

 

State 0,0 0,1 1,0 1,1 

0,0 -- q12 q13 -- 

0,1 q21 -- -- q24 

1,0 q31 -- -- q34 

1,1 -- q42 q43  

 

The values of the transiton rate parameters will depend upon the units of measurement in the 

phylogeny.  In general if the branch lengths are increased by a factor ‘c’ the transition rates will be 

decreased by the same factor ‘c’.  This has implications for modelling the rate parameters in Markov 

chains as discussed below. 

 

 Covarion model.  BayesTraits implements the covarion model for trait evolution (Tuffley and 

Steele, Math. Biosci. 147:63–91, 1998).  This is a variant of the continuous-time Markov model that 

allows for traits to vary their rate of evolution within and between branches.  It is an elegant model that 

deserves more attention, although users may find it of limited value with comparative data – the model 

may require many sites to be estimated well. 

 

The Generalised Least Squares model for continuously varying traits 

Continuous analyses phylogenetically structured continuously varying data using a generalised least 

squares (GLS) approach that assumes a Brownian motion model of evolution (see Pagel, 1997, 1999).  

In the GLS model, non-independence among the species is accounted for by reference to a matrix of 

the expected covariances among species.  This matrix is derived from the phylogenetic tree.  The 



model estimates the variance of evolutionary change (the Brownian motion parameter), sometimes 

called the ‘rate’ of change, and the ancestral state of traits at the root of the tree.  It can also estimate 

the covariance of changes between pairs of traits, and this is how it tests for correlation. 

 

The GLS approach means that data can be plotted across species and interpreted using the correlations 

and regressions obtained from Continuous.  The GLS approach as implemented in Continuous also 

makes it possible to transform and scale the phylogeny to test the adequacy of the underlying model of 

evolution, to assess whether phylogenetic correction of the data is required, and to test hypotheses 

about trait evolution itself – for example, is trait evolution punctuational or gradual, is there evidence 

for adaptive radiation,  is the rate of evolution constant.  These ideas will be discussed more under the 

Continuous heading below. 

 

Hypothesis Testing: Likelihood ratios and Bayes Factors 

BayesTraits does not test hypotheses for you but prints out the information needed to make hypothesis 

tests.  These will be discussed in more detail in conjunction with the examples below, but here we 

outline the two kinds of tests most often used. 

 

The likelihoods ratio (LR) test is often used to compare two likelihoods derived from nested model 

(models that can be expressed such that one is a special or general case of the other). The likelihood 

ratio statistic is calculated as  

 

LR= 2[log-likelihood(better fitting model) – log-likelihood(worse fitting model)] 

 

The likelihood ratio statistic is nominally distributed as a χ
2
 with degrees of freedom equal to the 

difference in the number of parameters between the two models. However, in some circumstances (see 

Pagel, 1994, 1997 and Barker and Pagel, 2005) the test may follow a χ
2
 with fewer degrees of freedom. 

 

Variants of the LR test include the Akaike Information Criterion and the Bayesian Information 

Criterion.  We do not describe these tests here.  They are discussed in many works on phylogenetic 

inference (see for example, Felsenstein.  Inferring Phylogenies, 2004). 

 

The LR, Akaike and Bayesian Information Criterion tests presume that the likelihood is at or near its 

maximum likelihood value.  In a MCMC framework tests of likelihood often rely on Bayes factors.  

The logic is similar to that for the likelihood ratio test, except here we compare the marginal 

likelihoods of two models rather than their maximum likelihoods.   

 

The marginal likelhood of a model is the integral of the model likelihoods over all values of the models 

parameters and over possible trees.  In practice this marginal likelihood is difficult to estimate but 

research shows it can be well approximated by the harmonic mean of the likelihoods allowing the 

Markov chain to run for a very large number of iterations (millions). 

 

BayesTraits calculates the logarithm of the harmonic mean of the likelihoods as the program runs, 

having ignored the likelihoods during the burn-in period when the model is moving to convergence.  

The running tally of harmonic means is read from the final iteration of the chain and the values for the 

independent and dependent models are then compared.  The test statistic is just   

 

2(log[harmonic mean(better model)] – log[harmonic mean(worse model)] 

 

Any positive value favours the dependent model, but conventionally a ratio greater than 2 is taken as 

‘positive’ evidence, greater than 5 is ‘strong’ and greater than 10 is ‘very strong’ evidence. 

 

General Features of BayesTraits 

The package is run as a command line program in a Unix window or as ‘batch’ runs using an input file.  

To run the program as a command line start the program in Unix by typing 

 

 ./BayesTraits treefile.trees inputdata.txt 

 

It is easiest to have all of the files in the same folder.  If not, you will need to type in the paths to the 

input and data files.  Every program within BayesTraits minimally requires a treefile and an input data 

file. 



 

i) treefile:  a rooted tree file in nexus format with one or more trees in it and the trees must 

have branch lengths. The trees in the nexus file must be rooted such that the root forms a binary node at 

the base of the tree, with a positive branch length leading to the outgroup(s).  Failure to root trees 

properly or including trees without branch lengths is one of the most common errors in using 

BayesTraits.  There are two example treefiles bundled with the package:  primate.trees and PPI.trees.  

The example below shows two treefiles from work on a eukaryote phylogeny and shows the format 

BayesTraits uses. 

 
#NEXUS 
begin trees; 
 translate 
  0 F_graminea, 
  1 N_crassa, 
  2 A_nidulans, 
  3 S_cerevisiae, 
  4 S_mikatae, 
  5 S_paradoxus, 
  6 S_bayanus, 
  7 S_castellii, 
  8 S_kluyveri, 
  9 C_albicans, 
  10 S_pombe, 
  11 C_neoformans, 
  12 M_grisea, 
  13 C_elegans, 
  14 D_melanogaster; 
  tree No_001 = 
((((((((((3:0.0130691766,5:0.0151973184):0.0022974291,4:0.0267966019):0.0
114844024,6:0.0296853757):0.0204440681,7:0.0465196055):0.0120969941,8:0.0
442292708):0.0209112159,9:0.1115276110):0.2651100835,10:0.1513436882):0.1
205270384,(((1:0.0662049379,0:0.0606875577):0.0155381574,12:0.1123581170)
:0.0360606937,2:0.0968434947):0.0236107824):0.0350977591,11:0.1712569743)
:0.1442959071,(14:0.1088280199,13:0.2266176629):0.1442959071); 
  tree No_002 = 
((((((((((3:0.0155205592,5:0.0127990548):0.0080254949,4:0.0233694460):0.0
097639217,6:0.0308958262):0.0277049990,7:0.0648142009):0.0179206608,8:0.0
428995908):0.0264746423,9:0.1098601223):0.2408391724,10:0.1199050581):0.1
222602939,(((1:0.0598463471,0:0.0709403415):0.0129094643,12:0.1216388258)
:0.0436879034,2:0.0893288737):0.0277157583):0.0379354529,11:0.1931459172)
:0.1114094552,(14:0.1720042840,13:0.2580361822):0.1114094552); 

end;  

 

ii) input data file:  the input data file is a plain text file.  It has one line for each species or 

taxon in the tree.  The names must be spelled exactly as in the tree and must not have any spaces within 

them.  They do not have to be in the same order.  Following a species name, leave white space or use a 

tab and enter the first column of data.  Repeat this for additional columns of data.  BayesMultistate and 

BayesContinuous can take any number of traits as input.  For BayesMultistate these will normally be 

values such as “0”, “1”, “2”, or “A”, “B”, “C”, etc.  If more than one column of data is input in 

BayesMultistate, the program fits a common evolutionary model to them all.  For BayesContinuous the 

input data can be integers or floating point numbers.  In addition BayesMultistate allows some taxa to 

be assigned a restricted number of states (see example below).  BayesDiscrete must have exactly two 

columns of data and they must take the values “0” and “1”.  In all of the programs, if a data point is 

missing a ‘-’ symbol can be used. 

 

Example of MultiState data 

 

Taxon 1  A A C 

Taxon 2  B B C 

Taxon 3  A B - 

Taxon 4  C C B 

……. 

Taxon n  BC A B 



 

Taxon 3 has missing data for the third site.  Missing data are treated as if the trait could take any of the 

other states. The first trait for Taxon n is uncertain.  The code BC signifies that it can take states B or in 

trait C (with equal probability) but is not allowed to be in state A. 

 
Example of Discrete (binary) data  

 

Taxon 1  0 0 

Taxon 2  0 0 

Taxon 3  1 0 

Taxon 4  0 1 

…….. 

Taxon n  1 1 

 

Example of Continuous data  

 

Taxon 1  10 9.0 

Taxon 2  1.06 0.25 

Taxon 3  5 2 

Taxon 4  3 4 

…….. 

Taxon n  1 1.1 

 

Having launched the program by giving it a treefile and and input data file this screen will appear 

 
Please Select the model of evolution to use. 

1)      MultiState. 

2)      Discrete: Independent model 

3)      Discrete: Dependent model 

4)      Continuous: Random Walk (Model A) 

5)      Continuous: Directional (Model B) 

6)      Continuous: Regression 

 

Type in the number of the model required.  These models will be described below in conjunction with 

each method.  Models 2 and 3 are for testing correlated evolution, model 4 fits the non-directional 

random walk model (Pagel, 1997, 1999) in Continuous, model 5 fits the directional model, and model 6 

allows regression models to be fitted within Continuous. 

 

Once you’ve done this you will be asked to select either maximum likelihood or MCMC as the method 

of analysis 

 
Please Select the analysis method to use. 

1)      Maximum Likelihood. 

2)      MCMC 
 

If maximum likelihood is chosen then the program will calculate the ML values of all parameters 

separately on each tree in the treefile.   The MCMC method estimates the Bayesian posterior 

distributions of the likelihoods of the data given the model and tree, and the parameters of the model of 

evolution. As with all Bayesian methods the results of the analyses are qualified in terms of the data, 

model and the priors.  

 

When performing MCMC analyses it may be a good idea to analyse the data first using ML to get an 

idea of the ‘optimal’ rate parameters and likelihood for each tree.   

 

Once a method of analysis is chosen the program will print out some information on the size of your 

tree and the analysis you have chosen. Typing “run” then starts the analysis.  During the analysis the 

program writes out an output file.  These features will be discussed separately for each method. 

 

Two useful commands that can be typed at any time are the info and help commands.  Info lists your 

input files and tells you the current status of your choices and settings. Help provides a list of all of the 

commands in the package. 

 

Using BayesTraits in Batch mode 



To use BayesTraits in batch mode you simply give the program an additional input file containing the 

instructions for the run.  For example 

 

./BayesTraits treefile.trees inputdata.txt <inputcommands.txt 

 

tells the program to retrieve its commands from the file inputcommands.txt.  This must be a pure text 

file and the first two lines of it must choose the model of evolution and the method.  After those two 

choice, any of the commands we describe below can be input and in any order. Here is an example: 

 

Example input command file for running in batch mode.  A hash before a command makes it act as a 

comment.  All commands here can be found in the appendix. 
 

# Select MultiState Analysis 

1 

# Select MCMC mode of analysis 

2 

# Reconstruct and internal node, using Most Recent Common Ancestor method  

 

AddMRCA Node-H 51 52 50 49 47 48  

 

# Use a hyperprior that seeds an exponential distribution from a uniform on the 

# the interval 0.0 to 30 

 

rjhp exp 0.0 30 

 

# Chooses a rate deviation so the  

# acceptance rate is 0.2 

 

ratedev 10 

 

# Allow the chain to burn-in for 10,000 iterations 

 

burnin 10000 

 

# Run the analysis. 

 

run 
 

Setting priors in MCMC mode.  When using the MCMC analysis method, the prior distributions of 

the parameters of the model of evolution must be chosen.  The values of the rate parameters are 

dependent upon the branch lengths of the tree.  Other things equal, longer branches will require smaller 

rate parameters and vice versa.  This is why the user must set the kind of prior (e.g., uniform, 

exponential) and the prior-interval or range of values the prior covers. 

 

Uniform or uninformative priors should be used if possible as these assume all values of the parameters 

are equally likely a priori and are therefore easily justified.  Uniform priors can be used when the 

signal in the data is strong.  But in a comparative study there will typically only be one or a few data 

points (unlike the many hundreds or thousands in a typical gene-sequence alignment) and so a stronger 

prior than a uniform may be required.   

 

Priors are the soft underbelly of Bayesian analyses.  The guiding principle is that if the choice of prior 

is critical for a result, you must have a good reason for choosing that prior.  It is often useful to run 

maximum likelihood analyses on your trees to get a sense of the average values of the parameters.  One 

option if a uniform with a wide interval does not constrain the parameters is to use a uniform prior with 

a narrower range of values, and this might be justified either on biological grounds or perhaps on the 

ML results.  The ML results will not define the range of the prior but can give an indication of its 

midpoint. 

 

NOTE:  A rule of thumb when choosing a constrained or informed (non-uniform) prior is that if the 

posterior distribution of parameter values seems truncated at either the upper or lower end of the 

constrained range, then the limits on the prior must be changed. 

 



The program allows exponential, gamma and beta distributed priors (beta priors not fully implemented 

yet).  The exponential distribution always has its mode at zero and then slopes down, whereas the 

gamma can  take a variety of uni-modal shapes or even mimic the exponential.  The exponential prior 

is useful when the general feeling is that smaller values of parameters are more likely than larger ones.  

If the parameters are thought to take an intermediate value, a gamma prior with an intermediate mean 

can be used. 

 

Priors are set differently in normal and hyperprior MCMC modes.  In the normal MCMC mode you 

specify the mean of the prior distribution for exponential priors or the mean and variance if using a 

gamma prior.  Priors can be set individually for each parameter (prior command) or more commonly 

all parameters can follow the same prior (priorall command). 

 

Because it can be difficult to arrive at suitable values for the parameters of the prior distributions when 

using exponential or gamma priors, BayesTraits allows the use of a hyperprior.   A hyperprior is 

simply a distribution – usually a uniform -- from which are drawn values to seed the values of the 

exponential or gamma priors.  We recommend using hyperpriors as they provide an elegant way to 

reduce some of the uncertainty and arbitrariness of choosing priors in MCMC studies.  For an example 

of selecting priors and using a hyperprior see Pagel, M., Meade, A. and Barker, D. 2004  Bayesian 

estimation of ancestral character states on phylogenies.  Systematic Biology, 53, 673-684.   

 

When using the hyperprior approach (hyperprior or reversible-jump hyperprior commands) you 

specify the range of values for the uniform distribution that is used to seed the prior distribution.  Thus, 

for example Hyperpriorall exponential 0 10 seeds the mean of the exponential prior from a uniform 

on the interval 0 to 10. Hyperpriorall gamma 0 10 0 10 seeds the mean and variance of the gamma 

prior from uniform hyperpriors both on the interval 0 to 10. 

 

The rate-parameter proposal mechanism in MCMC mode 

Multistate and Discrete estimate the transition rate parameters of continuous-time Markov models of 

trait evolution (see above).  The numerical values of these depend upon the branch lengths of the tree.  

In the MCMC mode, at each iteration of the Markov chain a new set of rate parameters of the model of 

evolution is proposed.  BayesTraits does this by changing the current values by an amount given by the 

ratedev parameter. 

 

To choose an appropriate value of ratedev, we run the Markov chain and monitor the acceptance rate 

of newly proposed values of the rate parameters (final column of the output).  Try to choose a value of 

ratedev that produces an acceptance rate of between 20 and 40%.  If the acceptance rate is too high, 

the model will accept nearly all changes and there will be much autocorrelation among successive 

states of the chain.  If the rate is too low, the model will not explore the parameter space effectively. 

 

Burn-in   

The burn-in period of a MCMC run is the early part of the run while the chain is reaching convergence.  

It is impossible to give hard and fast rules for how many iterations to give to burn-in.  We often find 

that a minimum of 10,000 and seldom more than 50,000 is sufficient.  The length of burn-in is set with 

the burnin command.  During burn-in nothing is printed out.  More complex models or larger trees 

may require longer burn-in periods. 

 

Sampling or Thinning 

Because successive iterations of most Markov chains are autocorrelated, there is frequently nothing to 

be gained from printing out each line of output.  Instead the chain is sampled or thinned to ensure that 

successive output values are roughly independent.  This is the job of the sample command.  It instructs 

the program only to print out every n
th
 sample of the chain.  Choose this value such that the 

autocorrelation among successive points is low (this can be checked in most statistics programs or even 

Excel).  For many comparative datasets, choosing every 300
th
 or so iteration is more than adequate to 

achieve a low autocorrelation. 

 

Output from the program 

BayesTraits routinely writes output files named after the input data file (see below) and called 

inputfile.log.txt.  When using maximum likelihood, the output file normally has a line of output given 

the maximum likelihood solutions associated with each tree in the input tree file (see below).  In the 



MCMC mode the program runs a large number of iterations in the Markov chain.  The output file 

contains a line of output for each iteration you have chosen to be printed out. 

 

The output itself normally contains columns for the iteration number, the log-likelihood, and the 

parameters of the model of evolution.  In most cases it is too wide to be displayed on a written page so 

we will not print them out here, or we will show truncated versions.  However, they can be viewed in 

Excel and the first line of the output file contains the column information. 

 

Iterations and Stopping 

The total number of iterations is selected in advance (iterations command).  It is best to choose a large 

number unless you have some idea of how many iterations of the chain are required to produce 

adequate posterior samples of results.  Whatever you choose the chain will run until it reaches the value 

you set or until the program is stopped manually by typing “ctrl C”. 

 

Capabilities 

In the examples we give to illustrate the methods we make use of only a small number of the 

capabilities of the program.  A full list of commands and what they do is available at the end of this 

manual, and a list is available from within the program by typing Help. 

 

BayesMultistate 
 

This is the information header that is printed if you choose an ML analysis in Multistate.  

 

Information Header for ML analysis 
Model:    Multistate 

Tree File Name:   treefile.trees 

Data File Name:   inputdata.txt 

Log File Name:   inputdata.txt.log.txt 

Summary:   False 

Analysis Type:  Maximum Likelihood 

ML attempts per tree: 10 

No of Rates:   2 

Base frequency (PI's)  None 

Character Symbols  0,1 

Using a covarion model: False 

Restrictions: 

q01                           None 

q10                           None 

Tree Information 

Trees:                       1 

Taxa:                        15 

Sites:                         2 

States:                      2 

 

This is the information header that is printed if you choose a MCMC analysis in Multistate. 

 

Information Header for MCMC analysis 
Model:                           Multistates 

Tree File Name:   treefile.trees 

Data File Name:   inputdata.txt 

Log File Name:   inputdata.txt.log.txt 

Summary:     False 

Analysis Type:   MCMC 

Sample Period:  100 

Iterations:    5010000 

Burn in:    1000 

Rate Dev:   2.000000 

No of Rates:   2 

Base frequency (PI's)  None 

Character Symbols   0,1 

Using a covarion model: False 

Restrictions: 

    q01                           None 

    q10                           None 



Prior Information: 

    Prior Categories:             100 

    q01                          uniform 0.00 100.00  

    q10                          uniform 0.00 100.00  

Tree Information 

     Trees:                       1 

     Taxa:                        15 

     Sites:                       2 

     States:                      2 

 

Some of the items are self-explanatory.  Syntax and a description of all of the commands can be found 

in the list of commands.  

 

Using MultiState to estimate the model of evolution and ancestral states for a binary trait 

 

This is an example showing how to calculate a likelihood and estimate the model of evolution using the 

data on primate mating systems that we reported in an earlier study (Pagel and Meade, American 

Naturalist, 2006).  For purposes of this example, consider that primate mating systems can be classified 

as multimale (females mate with more than one male) or unimale/monogamous.  We assign a “1” to 

primates with a multimale mating system and a “0” otherwise. 

 

The example data file MatingSystem.txt can be used for this example, and a file of primate 

phylogenetic trees is in Primates.trees. 

 

 

Using Maximum Likelihood  

 

Start by changing into the directory that the program is in and type. 

 

 ./BayesTraits Primates.trees MatingSystem.txt 

 

when prompted for the model of evolution, select MultiState by typing.  

 

 1 

 

when prompted for the analysis method, select Maximum Likelihood by typing . 

 

 1 

 

The current state of the options should be printed to the screen.  

 

The trait can adopt two forms.  The program recognises this and forms a model of evolution with two 

rate parameters (q01 and q10; see example above) allowing transitions between the two states in both 

directions.   

 

Type run and the program returns the output shown below for each of the 500 trees in the sample (here 

the output is shown for only the first 15 trees) 

 
Model:                            Multistates 

Tree File Name:               Primates.trees 

Data File Name:                MatingSystem.txt 

Log File Name:                 MatingSystem.txt.log.txt 

Summary:                          False 

Analysis Type:                  Maximum Likelihood 

ML attempt per tree:         10 

No of Rates:                      2 

Base frequency (PI's)       None 

Character Symbols          0,1 

Using a covarion model: False 

Restrictions: 

    q01 01                      None 

    q10                           None 

 



Tree Information 

     Trees:                       500 

     Taxa:                        60 

     Sites:                       1 

     States:                      2 
 

Tree No         Lh      q01      q10  Root P(0) Root P(1) 

1 -26.128542 3.025912 1.855425 0.851787 0.148213 

2 -25.680979 3.297484 2.040188 0.824616 0.175384 

3 -25.423403 2.723676 0.370298 0.997926 0.002074 

4 -23.943186 2.540748 1.358797 0.914664 0.085336 

5 -25.266580 2.693711 1.121502 0.970575 0.029425 

6 -25.132260 2.366744 2.641578 0.704291 0.295709 

7 -24.694278 2.885220 2.132934 0.780474 0.219526 

8 -25.725982 3.114022 2.247482 0.848629 0.151371 

9 -26.071698 2.667690 2.854395 0.607014 0.392986 

10 -27.581348 2.566995 2.770696 0.658500 0.341500 

11 -28.519134 2.682646 2.624153 0.648157 0.351843 

12 -25.169791 2.775758 2.516614 0.769022 0.230978 

13 -24.263356 2.673320 0.867233 0.975213 0.024787 

14 -26.872402 3.071314 1.538853 0.913724 0.086276 

15 -27.706916 3.216948 2.371269 0.767664 0.232336 

 

The output shows the tree number and its likelihood given the model, the values of the two rate 

coefficients and the reconstructed probabilities of the two states at the root of the tree. 

 

In maximum likelihood there is no natural way to combine these results across trees. One might find 

the average likelihood or the distribution of likelihoods (or rate coefficients or root probabilities) to 

illustrate variation among trees, but these are not posterior distributions in the Bayesian sense.  If the 

trees represented truly independent outcomes of evolution (say, having re-run evolution many times) 

then the results could be combined. By comparison, this problem vanishes in a MCMC analysis. 

Testing the model.  To see if transitions to multimale mating systems occur at a higher rate 

than transitions to unimale or monogamy, fit a model in which the two rates are constrained to be the 

same. 

 

Create this restriction by typing 

 

restrict q01 q10 

 

These forces these two rates to be the same. 

 

Check that the restrictions have been made by typing  

 

 info 

 

Run the model and check the log-likelihood.  A rule of thumb (see Pagel, Systs Biol., 1999) is that if 

this model is two or more log-likelihood units worse than the unconstrained model, then the two rate 

coefficients differ. 

 

Here is the output for the first ten trees 

 

Tree No Lh                 q01        q10             Root P(0)       Root P(1)  

1       -26.300189      2.642451        2.642451        0.739499        0.260501   

2       -25.847932      2.912631        2.912631        0.713887        0.286113         

3       -26.297972      2.315916        2.315916        0.858032        0.141968         

4       -24.138187      2.291604        2.291604        0.782778        0.217222         

5       -25.564786      2.358357        2.358357        0.836450        0.163550         

6       -25.142777      2.532060        2.532060        0.728201        0.271799         

7       -24.771434      2.624345        2.624345        0.696932        0.303068         

8       -25.824838      2.783177        2.783177        0.780507        0.219493         

9       -26.076215      2.770236        2.770236        0.626792        0.373208         



10     -27.587910      2.689143        2.689143        0.674509        0.325491         

 

 

Constraining the model has made very little difference to the likelihood, although it does influence the 

reconstructed root probability.  This suggests that the model could be reduced to one parameter. 

 

 Reconstruct an ancestral state.  BayesTraits has several approaches to reconstructing ancestral 

states.  One is to use the ‘Addnode’ command.  The Addnode command gives the program a list of 

species whose common ancestor is the node you wish to reconstruct.  The program then finds the 

proportion of the likelihood associated with each of the possible states at the node.  The node must 

exist in the tree for the command to work.  That is, the list of species must define a monophyletic group 

that is represented in the tree, or if a set of trees is used, the node must be present in each of them.  If it 

is not present in a tree, the program prints out dashes for the columns in the output corresponding to the 

reconstructed states and then moves to the next tree in the sample. 

 

Alternatively, you can use the AddMRCA or most recent common ancestor. As with Addnode, you 

give a list of species whose ancestral state you wish to reconstruct.  An MRCA reconstruction finds the 

node in each tree in the sample that minimally contains all of the species (tips) whose common 

ancestral state is of interest.  In any given tree the MRCA might also include other species.  The 

attraction of MRCA’s is that one exists in each tree.  When you use this command, the program prints 

out at the top of the output how many species on average had to be included in the monophyletic group 

that encompasses the species of interest.  If the species of interest form a monophyletic node in each 

tree in the sample this number will be equal to the number of species. 

 

 

The command to set-up an Addnode reconstruction for a group of species proceeds by listing the 

species whose ancestral node is sought.  In this example it is the list beginning with   

 

 AddNode Node01 51 52 50 49 47 48 

  

This creates a dummy node Node01 that here corresponds to the common ancestor to the Great Apes.  

You can number these in order to distinguish them from one another and call the nodes anything ytouy 

wish. 

 

The command to set-up a reconstruction for a MRCA of a group of species proceeds the same way 

 

AddMRCA Node02 51 52 50 49 47 48 

 

To get more information on the nodes type  

 

 info 

 

The information about the two nodes to reconstruct shows that Node01 is present in 99.4% of the trees 

or 497 out of the 500 trees in the sample.  Node02 can be defined as the MRCA with an average of 

6.066 nodes below it in the trees.  This means that the node containing only these six species exists in 

nearly every tree (497 in this case) and in the other three trees it contains an additional species. 

 

To run the program type 

 

 run 

 

The output should be displayed to the screen and is written to the log file.  Partial output is shown 

below.  On average the node is reconstructed to be in state 0 (a unimale/monogamous mating system) 

with over 90% certainty, although the degree of certainty varies from tree to tree. 

 
MRCA:                     Node02                    6.066000 

             51 Pongo_pygmaeus 

             52 Pongo_pygmaeus_abelii 

             50 Gorilla_gorilla 

             49 Homo_sapiens 

             47 Pan_paniscus 



             48 Pan_troglodytes 

Tree Information 

     Trees:                      500 

     Taxa:                       60 

     Sites:                      1 

     States:                     2 

 

Tree No         Lh  Node-1 P(0) Node-1 P(1) 

1 -26.128542 0.926693 0.073307 

2 -25.680979 0.926260 0.073740 

3 -25.423403 0.997766 0.002234 

4 -23.943186 0.942308 0.057692 

5 -25.266580 0.962753 0.037247 

6 -25.132260 0.696813 0.303187 

7 -24.694278 0.906045 0.093955 

8 -25.725982 0.826409 0.173591 

9 -26.071698 0.782306 0.217694 

10 -27.581348 0.778269 0.221731 

11 -28.519134 0.779776 0.220224 

12 -25.169791 0.814635 0.185365 

13 -24.263356 0.992560 0.007440 

14 -26.872402 0.936499 0.063501 

15 -27.706916 0.775460 0.224540 

 

Testing an ancestral state: Fossilizing a node  The Addnode and AddMRCA commands 

allow you to see the proportion of the likelihood associated with each of the alternative states.  To test 

whether a particular state is ‘significantly’ more likely at a node, you can use the fossil command.  This 

command takes the same list of species, and fixes the node at the value you specify.  For example 

 

fossil Node1 0 51 52 50 49 47 48 

 

This tells the program to set Node1 (arbitrary designation) to state 0.  Repeating this but fixing the state 

to “1” gives the likelihoods associated with that state.  Partial output is shown below first fixing the 

node to the state 0 and then to 1.  Comparing likelihoods from the same trees, there is on average about 

two log-units’ improvement when the node is fossilized to state 0, although the improvement varies 

from tree to tree.  A difference of two log units is conventionally taken as evidence for a ‘significant’ 

difference  (see Pagel, 1999 Syst Biol). 

 

Log-likelihoods when node fossilised top state 0 

Tree No      Lh         Node-1 P(0) Node-1 P(1) 

1 -26.158901 1.000000 0.000000 

2 -25.711727 1.000000 0.000000 

3 -25.423680 1.000000 0.000000 

4 -23.956182 1.000000 0.000000 

5 -25.271851 1.000000 0.000000 

6 -25.282182 1.000000 0.000000 

7 -24.732213 1.000000 0.000000 

8 -25.783000 1.000000 0.000000 

9 -26.228078 1.000000 0.000000 

10 -27.701514 1.000000 0.000000 

 

Log-likelihoods when node fossilised top state 1 

Tree No      Lh  Node-1 P(0) Node-1 P(1) 

1 -28.574470 0.000000 1.000000 

2 -28.138353 0.000000 1.000000 

3 -28.429778 0.000000 1.000000 

4 -26.498034 0.000000 1.000000 

5 -27.879264 0.000000 1.000000 

6 -26.768547 0.000000 1.000000 

7 -27.158833 0.000000 1.000000 

8 -27.794742 0.000000 1.000000 



9 -27.709327 0.000000 1.000000 

10 -29.519256 0.000000 1.000000 

 

 

 

Using Markov-chain Monte Carlo 

 

We can perform the same analyses as above far more easily and consistently using MCMC methods.  

In addition to running a conventional Markov chain, BayesMultistate implements a reversible-jump 

MCMC method (see Pagel and Meade, Am. Nat., 2006) that automatically finds the posterior 

distribution of models of evolution for the data.  For a binary trait the models are easy to enumerate: 

there can be two distinct rates, the two rates can be the same, or one or the other rate can be zero while 

the remaining one is positive.  In the above example, we discovered that a model with one rate 

parameter was virtually indistinguishable from a model with two rate parameters.  The RJ-MCMC 

model will discover this automatically, finding the models that best explain the data.  The frequency of 

a given model in the posterior distribution of models is the posterior belief in that ‘hypothesis’.  

 

Estimating the model.  Having opened the program and chosen MultiState, run the RJ-MCMC 

by selecting MCMC from the choice of methods of analysis (method 2).  A summary list will be 

printed out showing the default settings of the model: 

 
Model:                            Multistates 

Tree File Name:               Primates.trees 

Data File Name:               MatingSystem.txt 

Log File Name:                MatingSystem.txt.log.txt 

Summary:                          False 

Analysis Type:                   MCMC 

Sample Period:                 100 

Iterations:                       5010000 

Burn in:                          1000 

Rate Dev:                         2.000000 

No of Rates:                    2 

Base frequency (PI's)        None 

Character Symbols         0,1 

Using a covarion model:  False 

Restrictions: 

    q01                           None 

    q10                          None 

Prior Information: 

    Prior Categories:   100 

    q01                          uniform 0.00 100.00  

    q10                          uniform 0.00 100.00  

Tree Information 

     Trees:                       500 

     Taxa:                        60 

     Sites:                       1 

     States:                      2 

 

At this stage you could run the model using conventional MCMC.  If you do you will see that the 

estimated rate coefficients are very different from those under maximum likelihood and that the 

acceptance rate using the uniform priors (last column of output) is far too high – acceptance rates of 

around 20-40% are preferred.  This situation arises because the uniform priors are not restrictive 

enough.  We are asking a lot of the data to constrain the Markov chain given that there is only one 

‘site’ It may also have something to do with the ratedev parameter.  The ratedev command specifies 

how big a change is proposed to the rate coefficients at each iteration of the chain.  Here it is set a 2.00 

(see above). Larger ratedev values will have lower acceptance rates, other things equal.  If you re-run 

the analysis setting a narrow width (say 0-5, see priorall command) on the uniform, the output will 

resemble the maximum likelihood results.  However, unless you have a good prior reason for making 

the uniform width narrower, we suggest you use a hyperprior approach.  

 

When using the hyperprior you choose a distribution for the prior (exponential, gamma) and then the 

program estimates this prior from the data and using a uniform hyperprior to seed the prior (see Pagel, 

Meade and Barker, 2004).  When rate coefficients appear to be too large under MCMC with uniform 



priors (say as compared to the ML results), we suggest you choose an exponential or gamma prior.  

The program expects you to specify the distribution for the prior and the interval of the uniform 

hyperprior distribution that seeds it.  Typing in the RJ hyperprior command tells the program to use the 

reversible jump model with priors obtained from a hyperprior approach.  For example, typing  

 

rjhp exp 0.0 30 

 

specifies an exponential prior seeded from a uniform on the interval 0 to 30.  Running this gives 

acceptance rates in the 15-40% region and far better estimates of the rate coefficients.  Alternatively a 

narrower interval could be chosen such as “0 10”, perhaps on the basis of having viewed the ML 

results.  You can play with combinations of hyperprior values and ratedev values.  Alternatively 

 

 rjhp gamma 0 10 0 10 

 

specifies a gamma prior with its mean and variance seeded from uniform distributions on the interval 0 

to 10. 

 

Here is some partial output from running this analysis using an exponential, seeded by a uniform 

hyperprior on the interval of 0 – 30 using the default ratedev: 

 

Iteration       Lh      Harmonic Mean  Model     q01                   q10               Acceptance 

1000    -26.770390      -26.770390        0Z     3.187412        0.000000          0.040000 

1100    -23.999161      -26.395738        00     2.585303        2.585303         0.170000 

1200    -25.426837      -26.030607        00     1.985240        1.985240         0.470000 

1300    -26.408923      -26.031545        00     1.635713        1.635713         0.320000 

1400    -25.413955      -26.031289        00     2.624669        2.624669         0.240000 

1500    -26.366382      -26.025587        00     3.545666        3.545666         0.440000 

1600    -23.897902      -25.988378        00     2.808191        2.808191         0.490000 

1700    -22.596043      -25.857302        00     1.960398        1.960398         0.280000 

1800    -23.770145      -25.742906        00     1.914063        1.914063         0.230000 

1900    -24.456131      -25.655812        00     4.547834        4.547834         0.420000 

2000    -26.518204      -25.687223        00     4.296446        4.296446         0.360000 

2100    -25.739580      -25.744233        00     3.438055        3.438055         0.360000 

 

The likelihood column shows the log-likelihoods (Lh) of successive iterations of the chain.  These are 

comparable to those found under ML (although they will be smaller because ML is the ‘maximum 

likelihood’).  The column labelled ‘Harmonic Mean’ is the logarithm of the running harmonic mean of 

the likelihoods.  It will be used for hypothesis testing.  The column labelled “Model” shows the number 

of distinct rate categories in the model of evolution.  Here “00” means that both rate parameters are in 

the same rate category  -- that is, the RJ model has discovered that a one parameter model is adequate 

for these data.  Occasionally a 0Z appears in this column.  This indicates that the second rate parameter 

has been set to zero.  The rate coefficients are printed out and their distribution is the posterior 

distribution of rates for this model of evolution.  The final column shows the acceptance rate of the 

parameter proposal mechanism.  These are relatively high and suggest perhaps a larger ratedev value. 

 

The posterior distribution of models directly measures the Bayesian posterior belief in which model 

best explains the data.  The conclusion from running the MCMC analysis is that a one-parameter model 

is sufficient for these data.  Had the results come out 50% 2 parameters and 50% 1 parameter models, 

then there would be no strong reason to choose one over the other. 

 

 Reconstructing an ancestral state.  Start the program in the same way and select MultiState 

and MCMC from the options.   

 

 Add a node to be reconstructed using the AddMRCA command, here specifying an arbitrary 

node H that reconstructs the ancestral state of the Great Apes 

 

AddMRCA Node-H 51 52 50 49 47 48 

 

Then select a ratedev value and specify the hyperprior 

 



 ratedev 8 

  

       rjhp exp 0 30 

 

Type info to see that the node has been accepted. 

 

Then type  

 

run 

 

The output looks like this and tends to favour a “0” at the node as with ML. 

 

Iteration       Lh      Harmonic Mean     Model            Node-H P(0)   Node-H P(1)  Acceptance 

50000   -25.394096      -25.394096         0Z           1.000000        0.000000        0.190000 

50100   -23.986422      -25.104061          0Z          1.000000        0.000000        0.180000 

50200   -26.178406      -25.328024          0Z        1.000000        0.000000           0.030000 

50300   -24.289847      -25.422638          00         0.918426        0.081574          0.280000 

50400   -23.255129      -25.231827          00          0.799601        0.200399       0.230000 

50500   -24.151832      -25.082918          00           0.945233        0.054767        0.240000 

50600   -27.752323      -25.769331          00           0.888063        0.111937        0.290000 

50700   -26.087429      -26.135776          00           0.633256        0.366744       0.260000 

50800   -28.954741      -26.790314          0Z           1.000000        0.000000       0.290000 

50900   -24.805656      -27.098071          0Z           1.000000        0.000000       0.270000 

51000   -25.238036      -27.011407          00           0.842720        0.157280        0.300000 

51100   -25.066133      -26.935216          00           0.889033        0.110967        0.230000 

51200   -25.054813      -26.865085         '00           0.841599        0.158401        0.290000 

 

To test whether there is support for one state over the other at that node use the fossil command in 

place of the AddMRCA 

 

 fossil node1  0 51 52 50 49 47 48 

 

This sets the node to a value of “0”.  Let this run at least several millions of iterations and note the 

harmonic mean.  After one such run of over 2,000,000 iterations (a few minutes of time on a fast 

desktop) the harmonic mean was ~ -27.0.   

 

Repeat this run using fossil node1  1 51 52 50 49 47 48 

 

After a run of over 2,000,000 iterations the harmonic mean was ~-30.5 

 

The Bayes Factor test is just twice the difference between these two numbers or here a value of about 

7.  This is strong support for a “0” or unimale mating system at this node, in agreement with the ML 

analysis. 

 

Note: Harmonic means can be unstable so this analysis should be repeated maybe 5 times and with 

very long runs (10s or 100s of million of iterations) to be sure of the result. 

 

BayesDiscrete 
 

Having seen how to use BayesMultistate to estimate models of trait evolution and to reconstruct 

ancestral states, this section turns to the analysis of correlated evolution among pairs of traits. The 

examples in this section use the tree files in Primates.trees and PPI.trees and the data in 

Primates.txt and PPI.txt.  We will not present the results in as much detail as those for the Multistate 

examples, assuming that users can consult those example for instructions on opening and running the 

program, restricting parameters, creating and studying internal nodes, and choosing priors in MCMC 

analyses. 

 

We will show how to use Discrete to perform tests of correlated evolution.  The first is the analysis of 

correlated evolution between mating system in primates (as described above in the Multistate example) 



and whether or not female primates prominently advertise their oestrous – theory predicts that females 

will advertise in multimale mating systems (see Pagel and Meade, 2006).   

 

The second example shows how Discrete can be used to test for functional gene links.  Barker and 

Pagel (2005) show how a pattern of co-evolution in the presence/absence of two genes measured across 

species, can be used to identify pairs of genes likely to be functionally related.  We use Barker and 

Pagel’s (2005) phylogeny of the eukaryotes along with data on the presence/absence of two genes: 

YMR143W and YIL069C.   

 

The gene YMR143W is a protein component of the small (40S) ribosomal subunit in eukaryotes.  It is 

identical to Rps16Bp and has similarity to E. coli S9 and rat S16 ribosomal proteins.  Gene YIL069C is 

also a protein component of the small (40S) ribosomal subunit, having identity to Rps24Ap and 

similarity to rat S24 ribosomal protein.  Both being part of the ribosome they may co-evolve to 

maintain ribosomal shape and function. 

 

The test of correlated evolution compares the fit of two models of evolution, one in which the two traits 

evolve independently on the tree, and one in which they evolve in a correlated fashion.  Using 

maximum likelihood the models can be compared using a likelihood ratio statistic.  In the MCMC 

mode, we show how to test for correlated evolution using Bayes Factors.  Discussions of hypothesis 

testing can be found in Pagel (1994, 1997, 1999), Barker and Pagel (2005) and Pagel and Meade 

(2006). 

 

Mating System and Oestrous Advertisement 

 

Maximum likelihood 

 

Open the program using 

 

./BayesTraits Primates.trees Primates.txt  

 

select the Dependent model and maximum likelihood analysis. 

 

Then type mltries 25 and then run.  The mltries simply tells the program to use more than the default 

number (10) of optimization attempts in finding the likelihood.   

 

The output shows the likelihood associated with each tree, the values of the rate coefficients of the 

correlated evolution model, and probabilities associated with pairs of values at the root.  Recall that 

there are now two binary traits being analyzed, and these specify four possible pairs at the root.  Repeat 

this analysis but choosing the Independent model. 

 

The likelihoods for the first ten or so trees look like this: 

 

BayesDiscrete 

 

Dependent Model   Independent Model 

Tree No.    log-likelihood log-likelihood       

1         -33.592781  -41.179723 

2         -33.108115  -41.396814 

3         -34.340770  -41.697821 

4         -32.790228  -41.561578 

5         -34.901145  -42.776106 

6         -34.065972  -41.710494 

7         -32.215732  -39.984244 

8         -33.668641  -41.890039 

9         -33.735904  -41.806004  

10        -35.023375  -43.524174 

 

The differences are about 7-8 log-units per tree.  Again, there is no natural way to combine these 

results, but they do show that there is tree to tree variability.   

 



The likelihood ratio statistic is calculated as  

 

LR= 2(log-likelihood(Dependent model) – log-likelihood(Independent model)).  The likelihood ratio 

statistic is nominally distributed as a χ
2
 with degrees of freedom equal to the difference in the number 

of parameters between the two models.  Here that is four: the independent model requires two 

parameters per trait and the dependent model has eight parameters.  A likelihood ratio test would then 

be 2[log difference]~14-16, and this is highly significant when assessed against a chi-squared 

distribution with 4 degrees of freedom. 

 

MCMC 

 

The analysis of correlated evolution using MCMC is straightforward: simply run a Markov chain that 

simultaneously samples the posterior distribution of trees contained in the tree file and the parameters 

of the model of evolution.  The overall results are summarised by the harmonic mean. 

 

Using a ratedev of 10 and a hyperprior seeding an exponential from a uniform 0-30 distribution, the 

MCMC run produces a number of interesting results.  First, the reversible jump Discrete model reduces 

the full eight parameters of the Discrete dependent model to 1 or 2 rate categories on average (see 

Pagel and Meade, 2006 for a discussion). This is not to say that only 1 or 2 of the rates are needed, but 

that the eight rates fall into one or two different rate categories.  The column labelled ‘model string’ 

shows which parameters are in the same rate category (same integer value) and which have been 

assigned to the zero (Z) category.  The order of the rate coefficients in the string is the same as that in 

the printout. 

 

The output also shows that nearly every model that the Markov chain visits is a Dependent model, that 

is, it implies correlated evolution (column with D and I in it, although there are very few Is).  It is 

possible for the RJ model to create an Independent model even though this is a Dependent run.  The 

scarcity of the I models shows that the data strongly support correlated evolution. 

 

After a run of about 3 million iterations the following harmonic mean was obtained (may vary from run 

to run) ~ -38.86 

 

Repeat this analysis but confining the RJ chain to Independent models.  Use a ratedev of 8 and set 

rjhp exp 0 30.  The output shows that most of the models have 1 or 2 parameters (there are four 

parameters now, two for each trait in the Independent model).  A run of several million iterations 

yielded a harmonic mean of ~ -44.9. 

 

The log-Bayes Factor test is just twice the difference of these two harmonic means, here about 12 

showing very strong support for the correlation. 

 

Functional Gene Links 

 

Opening the program with ./BayesTraits PPI.trees PPI.txt run a correlated evolution analysis of two 

genes -- YMR143W and YIL069C – both of which are involved in ribosomal functioning.  We scored 

each gene for being presenct or absent in each of 15 eukaryotic species, based on reciprocal BLAST 

procedures (see Barker and Pagel, 2005).  The data can be viewed in PPI.txt. 

 

First choose the dependent or independent models of evolution under Discrete and then choose 

maximum likelihood as the mode of analyis. 

 

Maximum likelihood 

 

Set mltries to 25.   

 

The likelihoods for the first ten or so trees look like this: 

 

BayesDiscrete 

 

                 Dependent Model  Independent Model 

Tree No.   log-likelihood  log-likelihood       



1       -10.353423  -16.621997 

2       -10.588725     -17.128112 

3       -10.712233     -17.031504 

4       -10.921718  -17.615133        

5       -10.650607   -16.912456 

6       -11.026678    -17.880038 

7       -10.695006     -17.291076 

8       -10.808824   -17.495943 

9       -10.771289  -17.142453 

10     -10.629907  -17.252674 

 

 

The differences are about 7 log-units per tree.  Again, there is no natural way to combine these results, 

but they do show that there is tree to tree variability.   

 

The likelihood ratio statistic is calculated as  

 

LR= 2(log-likelihood(Dependent model) – log-likelihood(Independent model)).  The likelihood ratio 

statistic is nominally distributed as a χ
2
 with degrees of freedom equal to the difference in the number 

of parameters between the two models.  Here that is four: the independent model requires two 

parameters per trait and the dependent model has eight parameters.  A likelihood ratio test would then 

be 2[log difference]~14, and this is highly significant when assessed against a chi-squared distribution 

with 4 degrees of freedom. 

 

This result suggests that these two genes have co-evolved throughout the history of the eukaryotes.  

Interestingly, YMR143W and YIL069C are both involved in the small (40S) ribosomal subunit, and so 

these two genes’ coevolution may have something to do with linked changes to ribosomal functioning. 

 

Note on detecting functional gene links: We have recently shown (Barker, Meade and Pagel, 

Bioinformatics, in press) that the detection of functional gene links using our correlated evolution 

approach can be improved if rates of gene gain are set to a low value a priori, conforming to our 

expectation that a gene may be gained once, but that it is highly unlikely for the same gene to be gained 

twice.   

 

Re-doing the maximum likelihood analyses of these two genes but restricting the two initial rate of 

gain parameters (q12 and q13 in the Dependent model and alpha1 and alpha2 in the Independent model) 

to 0.05, increases the likelihood ratio considerably.   

 

It is easy to confirm this using the restrict command.  Having chosen the Dependent analysis type 

  

 restrict q12 0.05 

 

 restrict q13 0.05 

 

or in the Independent analysis type 

 

 restrict alpha1 0.05 

 

 restrict alpha2 0.05 

 

Running these analyses will yield Dependent log-likelihoods in the ~ -16.5 range and Independent log-

likelihoods of ~ -30.  These are worse likelihoods that the unconstrained model (as they must be) but 

the relative difference in goodness of fit as increased sharply.  The new likelihood ratio is on the order 

of 2(13.5) = 27 compared to the LR of about 14 for the unconstrained model.   

 

Evidence that this restricted model provides a more accurate description of the co-evolution of these 

two genes comes from examining the inferred ancestral state of the two genes.  In the unrestricted 

Independent analysis, the root probabilities for both genes are reconstructed at about 50% for each state 

(see last columns of output) – that is the model is uncertain as to whether the genes were present or 

absent ancestrally.  However, looking at the raw data (in PPI.txt) it is apparent that the genes are both 



present in multicellular and unicellular eukaryotes, good evidence that they were both found in the 

common ancestor to eukaryotes.  The restricted Independent model gets these two ancestral states 

correct, giving close to 100% support for both genes being present ancestrally.  We discuss this 

technique further in the Bioinformatics paper and see below how a similar improvement can be had 

from within a MCMC setting. 

 

MCMC 

 

Opening the program with ./BayesTraits PPI.trees PPI.txt run a correlated evolution analysis using 

MCMC methods of two genes whose presence and absence has been evaluated across 15 eukaryotic 

species (see Barker and Pagel, 2005). 

 

First choose the dependent or independent models of evolution under Discrete and then choose MCMC 

as the mode of analyis. 

 

Use a ratedev of 100 and a hyperprior seeding a gamma 0 10 0 10 distribution (rjhp gamma 0 10 0 

10).  This tells the program to seed the mean and the variance of the gamma prior distribution from a 

uniform hyperprior on the interval 0 10 for both parameters.  The MCMC run produces a number of 

interesting results.  First, the reversible jump Discrete model reduces the full eight parameters of the 

Discrete dependent model to 1 or 2 rate categories on average (see Pagel and Meade, 2006 for a 

discussion). This is not to say that only 1 or 2 of the rate coefficients are needed in the model but that 

the eight rates fall into only one or two different rate categories.  The column labelled ‘model string’ 

shows which parameters are in the same rate category (same integer value) and which have been 

assigned to the zero (Z) category.  The order of the rate coefficients in the string is the same as that in 

the printout. 

 

The output also shows that nearly every model that the Markov chain visits is a Dependent model, that 

is, it implies correlated evolution (column with D and I in it, although there are very few Is).  It is 

possible for the RJ model to create an Independent model even though this is a Dependent run.  The 

scarcity of the I models shows that the data strongly support correlated evolution. 

 

After a run of about 3 million iterations the following harmonic mean was obtained (may vary from run 

to run) ~ -17.1 

 

Repeat this analysis but confining the RJ chain to Independent models.  Use a ratedev of 100 and set 

rjhp gamma 0 10 0 10 again.  The output shows that most of the models have 1 or 2 parameters (there 

are four parameters now, two for each trait in the Independent model).  A run of several million 

iterations yielded a harmonic mean of ~ -20.1 

 

The log-Bayes Factor test is just twice the difference of these two harmonic means.  The test statistic is  

 

2log[harmonic mean(dependent model)] – log[harmonic mean(independent model)] 

 

This yields a log-Bayes Factor of about 6 or strong support for correlated evolution.  As with the ML 

result, the BayesFactor test suggests that YMR143W and YIL069C have co-evolved throughout the 

history of the eukaryotes.  The slightly weaker support for this result using MCMC may derive from 

the fact that the BayesFactor test integrates over uncertainty in the model and with a small phylogenetic 

tree such as used here, that uncertainty can be high. 

 

We do not yet have the ability to run the restricted model in our reversible jump method.  However, it 

is possible to use the program to run an ordinary Markov chain on these data, and using the output from 

the reversible jump model, set some parameters equal to each other or to zero.  At the same time, the 

rate of gain parameters can be restricted to small values.  Doing this for the PPI.txt data increases the 

BayesFactor to about 18, a stronger result than for the unrestricted model. 

 

BayesContinuous 
 

BayesContinuous can be used to test trait evolution, correlated evolution and to perform regressions for 

traits that vary on a continuous scale.  It will perform analyses in ML and MCMC modes. 

 



We do not currently have a manual available for the BayesTraits implementation of Continuous.  Those 

wishing to use BayesContinuous can download the Continuous manual from our website 

(www.evolution.rdg.ac.uk).  This manual was written for the Macintosh version of Continuous and 

gives a sense of how to use the models to test hypotheses.  Users can also contact Andrew Meade 

(a.meade@rdg.ac.uk) for further advice on using BayesContinuous.  
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Disclaimer 

We have tested all of the routines in this package but cannot ensure their accuracy in all situations.  

Always examine results to see if they make sense in the light of previous biological knowledge of your 

system.  We would be grateful if you would report bugs or unusual behavious in the program to us. 

 



Appendix:  List of commands in BayesTraits 

 

Command: AddMRCA 

Purpose: To reconstuct an internal node using the most recent common ancestor 

approach.  

Shortcut: mrca 

Parameters: A node name and a list of taxa names or number that define a node to 

reconstruct. 

Example: AddMRCA Node1 Taxa1 Taxa2 Taxa3 

mrca Node1 1 2 3 4 

 

Command: AddNode 

Purpose: To reconstruct an internal node.  

Shortcut: Addn 

Parameters: A node name and a list of taxa names or number that define a node to 

reconstruct.  

Example: AddNode Node1 Taxa1 Taxa2 Taxa3 

Addn Node1 1 2 3 4 

 

Command: AddTaxa 

Purpose: To add a taxa to a node to reconstruct or fossilise.   

Shortcut: AddTaxa 

Parameters: A node name and list of taxa to add.  

Example: AddTaxa Node0 Taxa1 Taxa2 Taxa3 

 

Command: BurnIn 

Purpose: To set the number of iterations to burn the MCMC chain in.  

Shortcut: bi 

Parameters: An integer 

Example: BurnIn 55000 

 

Command: Covarion 

Purpose: To turn on the covarion model. 

Can only be used with Multistate or Discrete data 

Shortcut: cv 

Parameters: None 

Example: Covarion 

cv 

 

Command: DelNode 

Purpose: Remove an internal node previously used to reconstruct or to fossilise.  

Shortcut: deln 

Parameters: A node name 

Example: DelNode Node1 

deln Node1 

 

Command: Delta 

Purpose: To estimate or set the delta parameter.  

Can only be used with continuous data. 

Shortcut: dl 

Parameters: None to estimate, or a floating point value to set  

Example: delta 

dl 0.25 

 

Command: DelTaxa 

Purpose: To remove taxa from a reconstructed or fossilised node.   

Shortcut: DelTaxa 

Parameters: A node name and a list of taxa names or numbers.  

Example: DelTaxa Node1 Taxa1 Taxa2 

 



Command: EvenRoot 

Purpose: To place the root midway between the in group and out group, in every tree.  

Shortcut: er 

Parameters: None 

Example: EvenRoot 

 

Command: ExcludeTaxa 

Purpose: To remove taxa form the analyses.  

Shortcut: Et 

Parameters: A list of taxa names or taxa numbers to remove.  

Example: ExcludeTaxa Taxa1 Taxa2 Taxa3 

et 1 2 3 

 

Command: Exit 

Purpose: To quite the program 

Shortcut: Quit 

Parameters: None 

Example: Exit 

Quit 

 

Command: Fossil 

Purpose: To fix an internal node to a given state.  

Can only be used with Multistate or Discrete data. 

Shortcut: fo 

Parameters: A node name, a state to fix and an internal node defined by a list of taxa names 

or numbers.  

Example: Fossil Node-A 0 Taxa1 Taxa2 Taxa3 

Fo Node-B 1 1 2 3 

 

Command: Help 

Purpose: To display a list of commands.  

Shortcut: He 

Parameters: None 

Example: Help 

 

Command: Hyperprior 

Purpose: To set a prior in which the parameters are drawn form a uniform range.  

Can only be used with Multistate or Discrete data. 

Shortcut: hp 

Parameters: A rate name, prior distribution and minimum and maximum for each parameter 

needed to describe the distribution.  

Example: Hyperprior q01 exp 0 100 

Hp q10 gamma 0 10 0 30 

 

Command: HyperPriorAll 

Purpose: To set the same hyper prior for all rates. 

Can only be used with Multistate or Discrete data. 

Shortcut: hpall 

Parameters: A prior distribution and minimum and maximum for each parameter needed to 

describe the distribution. 

Example: HyperPriorAll exp 0 10 

Hpall gamma 0 10 0 30 

 

Command: Info 

Purpose: To show the current setting for the analysis.  

Shortcut: In 

Parameters: None 

Example: Info 

 

Command: Iterations 



Purpose: To set the number of iterations to run the MCMC chain.  

Shortcut: it 

Parameters: The number of iterations to run the chain for.  

Example: Iterations 8000000 

it 1000000 

 

Command: Kappa 

Purpose: To estimate or set the kappa parameter. 

Shortcut: ka 

Parameters: None to estimate, or a floating point value to set 

Example: kappa 

ka 0.5 

 

Command: Lambda 

Purpose: To estimate or set the lambda parameter.  

Can only be used with continuous data. 

Shortcut: la 

Parameters: None to estimate, or a floating point value to set. 

Example: lambda 

la 0.75  

 

Command: LogFile 

Purpose: To set the name for the log file. By default it is the name of the data file with 

“.log.txt” appended to it. 

Shortcut: lf 

Parameters: A file name for the log.  

Example: LogFile logFile1.txt  

 

Command: Mltries 

Purpose: To set the number of times to run the optimisation algorithm. If results vary 

from run to run. This parameter should be increased form default of 10. 

Shortcut: mlt 

Parameters: An integer 

Example: Mltries 15 

mlt 30 

 

Command: Pis 

Purpose: To set the frequencies of the states. States frequencies can be estimated, 

uniform, empirical or none.  

Shortcut: Pi 

Parameters: uni, emp, est or none 

Example: Pis Uni 

Pis Est 

 

Command: Prior 

Purpose: To set the prior for a parameter.  

Shortcut: pr 

Parameters: A rate name, distribution (gamma, exp, uniform beta) and a list of parameters 

that define the distribution.  

Example: Prior q01 exp 10 

Pr q10 gamma 10 10 

 

Command: PriorAll 

Purpose: To set a single prior for all parameters. 

Shortcut: Pa 

Parameters: A distribution (gamma, exp, uniform beta) and a list of parameters that define 

the distribution. 

Example: PriorAll gamma 10 20 

pa uniform 0 30 

 



Command: RateDev 

Purpose: To set the deviation of the normal distribution, that changes to the rates are 

drawn form. This should be set so a the acceptance of the rate parameters is 

roughly 20% 

Shortcut: rd 

Parameters: A floating point number 

Example: RateDev 0.1 

rd 14.5 

 

Command: Restrict 

Purpose: To reduce the number of parameters required in the model. By setting two or 

more rates equal to each other.  

Shortcut: res 

Parameters: The rates to be set equal to each other or the rates to be set equal to a constant.  

Example: Restrict q01 q12 q32 

Res q01 q12 q32 1.75 

 

Command: RestrictAll 

Purpose: To restrict all rates to a single estimated parameter or a constant  

Shortcut: Resall 

Parameters: A single rate or a constant 

Example: RestrictAll q01 

Resall 0.8 

 

Command: RevJump 

Purpose: To toggle the use of reverse jump for model selection. 

Can only be used with Multistate or Discrete data 

Shortcut: rj 

Parameters: A prior and its parameter to use for all rates. 

Example: RevJump exp 10 

rj gamma 10 20 

 

Command: RevJumpHP 

Purpose: To toggle the use of reverse jump for model selection, using a hyper prior.  

Shortcut: rjhp 

Parameters: A prior distribution and minimum and maximum for each parameter needed to 

describe the distribution. 

Example: RevJumpHP gamma 0 10 0 10 

rjhp exp 0 10 

 

Command: Run 

Purpose: To start the analysis running. 

Shortcut: Ru 

Parameters: None 

Example: Run 

 

Command: Sample 

Purpose: To specify the sample period in MCMC 

Shortcut: sa 

Parameters: An integer 

Example: Sample 500 

 

Command: SaveTrees 

Purpose: To save the tree to a tree file. Any excluded taxa will be removed.  

Shortcut: st 

Parameters: A tree file name.  

Example: SaveTrees NewTrees.tree 

st NewTrees.trees 

 

Command: TaxaInfo 



Purpose: To list taxa numbers and names 

Shortcut: ti 

Parameters: None 

Example: TaxaInfo 

 

Command: TestCorrel 

Purpose: To toggle the test for correlation. 

Can only be used with continuous data. 

Shortcut: Correlation  

Parameters: None 

Example: TestCorrel 

TC 

 

Command: UnRestrict 

Purpose: To remove a restriction form a rate or set of rates.  

Shortcut: Unres 

Parameters: A rate or set of rates to un restrict 

Example: UnRestrict q01 q10 q32 

Unres q32 

 

 


