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Major Changes from V1 
 A range of new models:  

Multiple regression 

Variable rates 

Independent Contrast  

Independent Contrast: Correlations 

Independent Contrast: Regression  

  Covarion models 

 Higher precision method for large trees 

Rate deviation and data deviation parameters are automatically tuned 

 Hard polytomys are now supported 

 Improved handling of model files 

 Estimation of internal and tips for continuous and discrete data  

Numerous bug fixes and improvements  

Disclaimer 
 Software development is a notoriously error prone activity. While efforts are made to make 

the programme as accurate as possible, due to the size and complexity of BayesTraits it will contain 

bugs, care must be taken when using the software. If you notice any unusual behaviour including 

crashes or inconsistent results please contact the authors with the data, trees and commands used.      
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Introduction 
BayesTraits is a computer package for performing analyses of trait evolution among groups 

of species for which a phylogeny or sample of phylogenies is available, these can be created using 

BayesPhylogenies. It can be applied to the analysis of traits that adopt a finite number of discrete 

states, or to the analysis of continuously varying traits. The methods can be used to take into 

account uncertainty about the model of evolution and the underlying phylogeny. Evolutionary 

hypotheses can be tested including 

Finding rates of evolution 

Establishing correlations between traits 

Calculating ancestral state values 

Building regression models 

Predicting unknown values 

Testing for modes of evolution 

 Accelerated / decelerated rates of evolution through time 

Magnitude of phylogenetic signal 

Variable rate of evolution through time and within the tree  

Ornstein-Uhlenbeck processes 

If trait change is concentrated at speciation events 

Test for covarion evolution 
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Methods and Approach 
BayesTraits uses Markov chain Monte Carlo (MCMC) methods to derive posterior 

distributions and maximum likelihood (ML) methods to derive point estimates of, log-likelihoods, the 

parameters of statistical models, and the values of traits at ancestral nodes of phylogenies.  The user 

can select either MCMC or reversible-jump MCMC.  In the latter case the Markov chain searches the 

posterior distribution of different models of evolution as well as the posterior distributions of the 

parameters of these models (see below).   

BayesTraits can be used with a single phylogenetic tree in which case only uncertainty about 

model parameters is explored, or, it can be applied to suitable samples of trees such that models are 

estimated and hypotheses are tested taking phylogenetic uncertainty into account.   

BayesTraits is designed to be as flexible as possible, but users must treat this flexibility with 

care, as it allows models which may not have a valid interpretation, for example you care create 

complex models which cannot be estimated from the given data, such as estimating 100 parameters 

for a 30 taxa tree or build a regression model form unsuitable data.  

BayesTraits methods 
• MultiState is used to reconstruct how traits that adopt a finite number of discrete states 

evolve on phylogenetic trees.  It is useful for reconstructing ancestral states and for testing models 

of trait evolution. It can be applied to traits that adopt two or more discrete states (Pagel, Meade et 

al. 2004) 

• Discrete is used to analyse correlated evolution between pairs of discrete binary traits.  Most 

commonly the two binary states refer to the presence or absence of some feature, but could also 

include “low” and “high”, or any two distinct features. Its uses might include tests of correlation 

among behavioural, morphological, genetic or cultural characters  (Pagel 1994, Pagel and Meade 

2006) 

• Continuous is for the analysis of the evolution of continuously varying traits using a GLS 

framework. It can be used to model the evolution of a single trait, to study correlations among pairs 

of traits, or to study the regression of one trait on two or more other traits (Pagel 1999). 

• Continuous regression is used to build regression models and use these models to 

reconstruct unknown values (Organ, Shedlock et al. 2007). 

• Independent contrast methods (Felsenstein 1973, Freckleton 2012) provides a very fast 

alternative to the GLS methods. They are useful for analysing large trees, but some model 

parameters cannot be estimated. 

• Variable rates is used to detect variations in the rate of evolution threw the tree, accounting 

for changes in rate on a single lineage or for a group of taxa (Venditti, Meade et al. 2011). 

This manual is designed to show how to use the programs that implement these models.  

Detailed information about the methods can be found in the papers listed at the end (some are 

available as pdfs on our website). Syntax and a description of all of the commands in BayesTraits is 

listed below.  
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Model Data 

MultiState Multistate  

Discrete: Independent Two binary traits 

Discrete: Dependent Two binary traits 

Continuous: Random Walk Continuous traits 

Continuous: Directional Continuous traits 

Continuous: Regression Two or more continuous traits 

Independent Contrasts Continuous traits 

Independent Contrasts: Correlation Two or more continuous traits 

Independent Contrasts: Regression Two or more continuous traits 

Discrete: Covarion Two binary traits 

Build information 
 BayesTraits comes in a number of different versions and a number of these versions can be 

combined. All versions of BayesTraits are for 64 bit operating systems, 32 bit versions are available 

on request. Different versions include,  

Quad – a high precision version, for use with discrete and multistate models when using 

large trees, see Precision for more information.  

OpenMP – a multicore version of BayesTraits for use with discrete and multistate model 

when using large trees, see OpenMP for more information. 

OpenCL – a version of BayesTraits designed to use graphics cards to accelerate the 

computationally intensive sections of the program, see OpenCL for more information. 

The different versions of BayesTraits may require external librarys to be installed on 

different operating systems, in most cases it’s when using Linux versions.    

Tree Format 
 BayesTraits requires trees to be in Nexus format, trees can include hard polytomies but must 

be correctly rooted and include branch lengths. Taxa names must not be included in the description 

of the tree but should be linked to a number in the translate section of the tree file, a number of 

example trees are included with the program.  

Data Format 
 Data are read from a plain text file (ASCII), with one line for each species or taxon in the tree.  

The names must be spelled exactly as in the trees and must not have any spaces within them. They 

do not have to be in the same order.  Following a species name, leave white space (tab or space) and 

enter the first column of data, repeat this for additional columns of data (see below).  Data for 

MultiState analysis should take values such as “0”, “1”, “2” or “A”, “B”, “C” etc. Data for discrete 

must be exactly two columns of binary data and must take the values “0” or “1”. Continuous data 

should be integers or floating points. If data are missing it should be represented using “-“, for a trait 

in MultiState or Discrete the remaining data for the taxa is used, if data are missing for Continuous 
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the taxa are removed from the tree. Example data files for MultiState, Discrete and Continuous data 

are included with the program.  

Example of MultiState data  

Taxon01 A A C 
Taxon02 B B C 
Taxon03 A B - 
Taxon04 C C B 
….    
TaxonN BC A B 

Taxon 3 has missing data for the third site. In Discrete and Multistate missing data are 

treated as if the trait could take any of the other states, with equal probability. Alternatively you can 

indicate uncertainty about a traits value. For example, the first trait for Taxon n is uncertain.  The 

code BC signifies that it can be in states B or C (with equal probability) but not in state A. 

Example of Discrete (binary) data  

Taxon01 0 0 

Taxon02 0 - 

Taxon03 1 0 

Taxon04 0 1 

….   

TaxonN 1 1 

 

Example of Continuous data  

Taxon01 10 9.0 

Taxon02 1.06 - 

Taxon03 5.3 2 

Taxon04 3 4 

….   

TaxonN 1 1.1 

Running BayesTraits 
 BayesTraits is run from the command prompt (windows) or terminal (OS X and Linux), it is 

not run by double clicking on it. The program, tree file and data file should be place in the same 

directory / folder. Start the command prompt / terminal and change to the directory that the 

program, tree and data are in and type.  

 Windows 

BayesTraits.exe TreeFile DataFile  

 Linux / OSX 

./BayesTraits TreeFile DataFile 

 Where TreeFile is the name of the tree file and DataFile is the name of the data file.  
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Running BayesTraits with a command file 
 If you need to run an analysis multiple times or if it is complex it can be more convenient to 

place the commands into a command file, instead of typing them in each time. A command file is a 

plane ASCII text file, with the commands to run.  

An example command file is included with the program, “ArtiodactylMLIn.txt”. The file has 
three lines. The first line selects MultiState, the second is for ML analysis and the third is to run the 
program. To run BayesTraits using the Artiodacty tree, data and input file use the following 
command. The command and there order can be found by running the program normally and noting 
your inputs. 

 
 1 

 1 

run 

 

Windows  
 

BayesTraits.exe Artiodactyl.trees Artiodactyl.txt < ArtiodactylMLIn.txt 

 

 Linux / OS X 
 

./BayesTraits Artiodactyl.trees Artiodactyl.txt < ArtiodactylMLIn.txt 

Continuous-time Markov models of trait evolution for discrete traits 
Multistate and Discrete fit continuous-time Markov models to discrete character data.  This 

model allows the trait to change from the state it is in at any given moment to any other state over 

infinitesimally small intervals of time.  The rate parameters of the model estimate these transition 

rates (see Pagel (1994) for further discussion).  The model traverses the tree estimating transition 

rates and the likelihood associated with different states at each node. 

The table below shows an example of the model of evolution for a trait that can adopt three 

states, 0, 1, and 2.  The qij are the transition rates among the three states, and these are what the 

method estimates on the tree, based on the distribution of states among the species.  If these rates 

differ statistically from zero, this indicates that they are a significant component of the model.  The 

main diagonal elements are constrained to be equal to minus the sum of the other elements in the 

row. 

Example of the model of evolution for a trait that adopts three states 

State 0 1 2 

0 -- q01 q02 

1 q01 -- q12 

2 q20 q21 -- 
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For a trait that adopts four states, the matrix would have twelve entries, for a binary trait 

the matrix would have just two entries. 

Discrete tests for correlated evolution in two binary traits by comparing the fit (log-

likelihood) of two of these continuous-time Markov models.  One of these is a model in which the 

two traits evolve independently on the tree.  Each trait is described by a 22 matrix in the same 

format as the one above, but in which the trait adopts just two states, “0” and “1”.  This creates two 

rate coefficients per trait. 

The other model, allows the traits to evolve in a correlated fashion such that the rate of 

change in one trait depends upon the background state of the other.  The dependent model can 

adopt four states, one for each combination of the two binary traits (0,0; 0,1; 1,0; 1,1). It is 

represented in the program as shown below and the transition rates describe all possible changes in 

one state holding the other constant.  The main diagonal elements are estimated from the other 

values in their row as before.  The other diagonal elements are set to zero as the model does not 

allow ‘dual’ transitions to occur, the logic being that these are instantaneous transition rates and the 

probability of two traits changing at exactly the same instant of time is negligible.  Dual transitions 

are allowed over longer periods of time, however.  See Pagel, 1994 for further discussion of this 

model. 

 

State 0,0 0,1 1,0 1,1 

0,0 -- q12 q13 -- 

0,1 q21 -- -- q24 

1,0 q31 -- -- q34 

1,1 -- q42 q43 -- 

 

The values of the transition rate parameters will depend upon the units of measurement 

used to estimate the branch lengths in the phylogeny.  If the branch lengths are increased by a factor 

‘c’ the transition rates will be decreased by the same factor ‘c’.  This has implications for modelling 

the rate parameters in Markov chains as discussed below. 

 Covarion model  BayesTraits implements the covarion model for trait evolution (Tuffley and 

Steel 1998).  This is a variant of the continuous-time Markov model that allows for traits to vary their 

rate of evolution within and between branches.  It is an elegant model that deserves more attention, 

although users may find it of limited value with comparative data. 

The Generalised Least Squares model for continuously varying traits 
Continuous analyses phylogenetically structured continuously varying data using a 

generalised least squares (GLS) approach that assumes a Brownian motion model of evolution (see 

(Pagel 1997, Pagel 1999))In the GLS model, non-independence among the species is accounted for 
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by reference to a matrix of the expected covariances among species.  This matrix is derived from the 

phylogenetic tree.  The model estimates the variance of evolutionary change (the Brownian motion 

parameter), sometimes called the ‘rate’ of change, and the ancestral state of traits at the root of the 

tree (alpha).  It can also estimate the covariance of changes between pairs of traits, and this is how it 

tests for correlation. 

The GLS approach as implemented in Continuous makes it possible to transform and scale 

the phylogeny to test the adequacy of the underlying model of evolution, to assess whether 

phylogenetic correction of the data is required, and to test hypotheses about trait evolution itself – 

for example, is trait evolution punctuational or gradual, is there evidence for adaptive radiation, is 

the rate of evolution constant.   

 

Generalised Least Squares (GLS) and independent contrasts 

The generalised least squares (GLS) method requires a number of computationally intensive 

calculations, including matrix inversions, Kronecker products and matrix multiplications. The time it 

takes to calculate a solution for GLS methods increases rapidly with the size of the tree making 

analysis on large trees hard. Independent contrast (Felsenstein 1973, Freckleton 2012) uses a 

restricted likelihood method, these methods are computationally efficient at the expense of not 

estimating some parameters, especially when using MCMC, see individual model description for 

information about which parameters are estimated. If speed is an issue, for data sets with hundreds 

or thousands of taxa, independent contrast should be favoured.  

Hypothesis Testing: Likelihood ratios and Bayes Factors 
BayesTraits does not test hypotheses for you but prints out the information needed to make 

hypothesis tests. These will be discussed in more detail in conjunction with the examples below, but 

here we outline the two kinds of tests most often used. 

The likelihood ratio (LR) test is often used to compare two likelihoods derived from nested 

model (models that can be expressed such that one is a special or general case of the other). The 

likelihood ratio statistic is calculated as  

LR= 2[log-likelihood(better fitting model) – log-likelihood(worse fitting model)] 

The likelihood ratio statistic is asymptotically distributed as a 2 with degrees of freedom 

equal to the difference in the number of parameters between the two models. However, in some 

circumstances (Pagel 1994, Pagel 1997) the test may follow a 2 with fewer degrees of freedom. 

Variants of the LR test include the Akaike Information Criterion and the Bayesian 

Information Criterion. We do not describe these tests here.  They are discussed in many works on 

phylogenetic inference (see for example, (Felsenstein 2004)). 

The LR, Akaike and Bayesian Information Criterion tests presume that the likelihood is at or 

near its maximum likelihood value. In a MCMC framework tests of likelihood often rely on Bayes 

Factors (BF). The logic is similar to that for the likelihood ratio test, except here we compare the 
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marginal likelihoods of two models rather than their maximum likelihoods.  The marginal likelihood 

of a model is the integral of the model likelihoods over all values of the models parameters and over 

possible trees, weighted by their priors.  In practice this marginal likelihood is difficult to calculate 

and must be estimated. BayesTraits provides two methods to estimate the marginal likelihood, a 

harmonic mean estimate (Newton and Raftery 1994, Kass and Raftery 1995) and a stepping stone 

sampler (Xie, Lewis et al. 2011).  

The harmonic mean estimate is calculated as the chain runs, after burn-in and is recorded in 

the “Harmonic Mean” column of the output, the harmonic mean is a running estimate so only the 

last value is used, the estimate of the harmonic mean will improve as the chain runs. Please note 

that because the harmonic mean is a running estimate, each sample of the chain does not produce 

an independent value and they cannot be analysed like other parameters. The harmonic mean can 

be very hard to estimate and may require multiple long runs for parameter rich analysis.  

The stepping stone sampler estimates the marginal likelihood by placing a number of 

‘stones’ which link the posterior with the prior, the stones are successively heated, forcing the chain 

from the posterior towards the prior, this provides an effective estimate of the marginal likelihood. 

The “stones” command, shortcut “st”, is used to set the sampler, the command takes the number of 

stones and the length to run the chain on each stone. An example of setting the stones sampler is 

below, the command sets the sampler to use 100 stones and run each stone for 10,000 iterations.  

stones 100 10000 

 

The sampler runs after the chain has finished and produces a file with the extension 

“Stones.txt”, the log marginal likelihood is recorded at the end of the file. Other information such as 

temperature, stones likelihood and marginal likelihood of each stone is also included but this is 

mainly for diagnostic purposes.  

The marginal likelihood from the harmonic mean and stepping stone sampler are expressed 

on a natural log scale, these values can be converted into Log BF using the formula below. Raffety in 

(Gilks, Richardson et al. 1996) Pages 163–188, provides an interpretation of these values.  

Log BF = 2(log marginal likelihood complex model – log marginal likelihood simple model) 

Log BF Interpretation 

<2 Weak evidence 

>2 Positive evidence 

5-10 Strong evidence 

>10 Very strong evidence 

Both the harmonic mean and stepping stone sampler estimate the marginal likelihood, these 

estimates are sensitive to a number of factors, including, priors, length of the chain and number of 

estimated paramiters. Care should be taken to ensure estimates are accurate and stable, multiple 

independent run should be used and the effect of using longer chains, more stones or sampling each 

stone for longer should be investigated. While two methods to calculate the marginal likelihood are 

provided the stepping stone sampler seems to produce more robust results especially when using 

models with higher dimensions. Model testing is a controversial topic with Bayesian analysis, and 

other options such as BIC, AIK, DIC may be considered. 
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Priors 
When using the MCMC analysis method, the prior distributions of the parameters of the model of 

evolution must be chosen. Uniform or uninformative priors should be used if possible as these assume all 

values of the parameters are equally likely a priori and are therefore easily justified.  Uniform priors can be 

used when the signal in the data is strong.  But in a comparative study there will typically only be one or a few 

data points (unlike the many hundreds or thousands in a typical gene-sequence alignment) and so a stronger 

prior than a uniform may be required.   

Priors are the soft underbelly of Bayesian analyses.  The guiding principle is that if the choice of prior 

is critical for a result, you must have a good reason for choosing that prior.  It is often useful to run maximum 

likelihood analyses on your trees to get a sense of the average values of the parameters. One option if a 

uniform with a wide interval does not constrain the parameters is to use a uniform prior with a narrower range 

of values, and this might be justified either on biological grounds or perhaps on the ML results.  The ML results 

will not define the range of the prior but can give an indication of its midpoint. 

NOTE:  A rule of thumb when choosing a constrained or informed (non-uniform) prior is that if the posterior 

distribution of parameter values seems truncated at either the upper or lower end of the constrained range, 

then the limits on the prior must be changed. 

The program allows uniform, exponential, gamma and beta distributed priors, specified as “exp”, “gamma”, 

“uniform”, “beta”.  The uniform prior requires the user to specify a range, the exponential distribution 

always has its mode at zero and then slopes down, whereas the gamma can take a variety of uni-modal shapes 

or even mimic the exponential.  The exponential prior is useful when the general feeling is that smaller values 

of parameters are more likely than larger ones. If the parameters are thought to take an intermediate value, a 

gamma prior with an intermediate mean can be used. 

Priors are set using the prior command, the Prior command takes a parameter to set the prior for a 

distribution (uniform, exp, gamma or beta) and the parameters of the distribution. For example,  

 prior q01 exp 10 

 is used to set an exponential prior with a mean of 10 for the rate parameter q01 

 prior q10 uniform 0 100  

 sets the prior on q10 to a uniform 0 – 100 

In many cases you will want to use the same prior on all parameters, the PriorAll command can be 

used to do this. It is identical to the prior command but does not take a parameter. For example, 

priorAll exp 10 

sets all prior to an exponential with a mean of 10 

Because it can be difficult to arrive at suitable values for the parameters of the prior distributions, 

BayesTraits allows the use of a hyper-prior.  A hyper-prior is simply a distribution – usually a uniform -- from 

which are drawn values to seed the values of the exponential or gamma priors.  We recommend using 

hyperpriors as they provide an elegant way to reduce some of the uncertainty and arbitrariness of choosing 

priors in MCMC studies. For an example of selecting priors and using a hyper-prior see (Pagel, Meade et al. 

2004) 

When using the hyper-prior approach you specify the range of values for the uniform distribution that 

is used to seed the prior distribution.  Thus, for example “HyperPriorAll exponential 0 10” seeds the mean of 
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the exponential prior from a uniform on the interval 0 to 10. “HyperPriorAll gamma 0 10 0 10” seeds the mean 

and variance of the gamma prior from uniform hyper priors both on the interval 0 to 10. For a full list of 

commands see the command list.  

Burn-in and sampling in MCMC analysis  
The burn-in period of a MCMC run is the early part of the run while the chain is reaching 

convergence. It is impossible to give hard and fast rules for how many iterations to give to burn-in.  

We often find that a minimum of 10,000 and seldom more than 1,00,000 is sufficient.  The length of 

burn-in is set with the burnin command. During burn-in nothing is printed. With more complex 

models or larger trees often requiring longer burn-in periods. 

Because successive iterations of most Markov chains are autocorrelated, there is frequently 

nothing to be gained from printing out each line of output.  Instead the chain is sampled or thinned 

to ensure that successive output values are roughly independent.  This is the job of the sample 

command.  It instructs the program only to print out every nth sample of the chain.  Choose this 

value such that the autocorrelation among successive points is low (this can be checked in most 

statistics programs or even Excel).  For many comparative datasets, choosing every 1000th or so 

iteration is more than adequate to achieve a low autocorrelation. 

The chain is run for 1010000 iterations by default, this can be changed with the iterations 

command, which takes the number of iterations to run for or -1 for an infinite chain, which can be 

stopped by holding Ctrl and pressing C.  

The parameter proposal mechanism and mixing in MCMC analysis 

Mixing 
Mixing, the proportion a proposed change to a chain is accepted, is key to a successful 

MCMC analysis, MCMC proceeds by proposing changes to parameters. If proposed changes to a 
parameter are too large the likelihood will change dramatically, and at convergence many of the 
proposed changes will have a poor likelihood. This will cause the chain to have a low acceptance rate 
and the chain will mix poorly or even becoming stuck. The other side of the coin is, if small changes 
are proposed the likelihood does not change much, leading to a high acceptance rate, but the chain 
typically does not explore the parameter space effectively. An ideal acceptance rate is often 
between 20-40% when the chain is at convergence.  
 

Parameter values can vary widely between data sets and trees, as the units data and branch 
lengths are in can vary orders of magnitude. This makes it very hard to find a universal proposal 
mechanism. An automatic tuning methods is used in BayesTraits to adapt the proposal mechanism 
to achieve an acceptance rate of 35%.  

Monitoring Acceptance Rate 
BayesTraits can produce a schedule file, using the “schedule” command, which is used to 

monitor how the chain is mixing, the file contains the schedule, the percentage of operators tried, 
followed by a header. The header shows the number of times an operator was tried and the 
percentage of time it was accepted, if auto tune is used the rate deviation values, acceptance rate 
for that parameter, the average acceptance for that iteration and the running mean acceptance rate 
is recorded. The schedule file should be reviewed to make sure the chain is mixing correctly.  
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Over parameterisation 
 
Due to the statically nature of the methods it is possible to create over parameterised 

models, were too many parameters are estimated from not enough data. Indications of over 
parameterisation include, poorly estimated parameters, parameters trading off against each other, 
suboptimal likelihoods, and poor convergence / parameter optimisation. Model complexity can be 
reduced by combining parameters with the restrict command, or by using reverse jump MCMC and 
ensuring the ratio of parameters to data is not high.  
 

Parameter restrictions 
For multistate and discrete models the number of parameters increases roughly as square of 

the number of states, it is important to have sufficient data to estimate them. Multistate and 
discrete models allow parameters to be combined, reducing the number of free parameter. The 
restrict command (res) is used to restrict parameter, the command takes two or more parameter 
names, restricting all supplied parameters to the first 

 
To restrict alpha2 to alpha1 use the following command 
Res alpha1 alpha2 

 

To restrict all parameters, in an independent model, to alpha 1 use 
Res alpha1 alpha2 beta1 beta2 

Or 
ResAll alpha1 

 

Parameters can also be restricted to constants, including zero, in the same way 
Res alpha1 1.5 
Or 
Res alpha1 alpha2 1.5 
 

The unrestricted (UnRes) command can be used remove restrictions 
 
Model testing (see above) can be used to test if a parameter is statistically justified, when 

rates are restricted the number of free parameters is reduced.   

Reverse Jump MCMC 
 For a complex model the number of possible restrictions is large, and may be impossible to 

test. A reverse jump MCMC method (Green 1995) was developed to integrate results over model 

parameter and model restrictions, for a detailed description see (Pagel and Meade 2006).  

 The RevJump (RJ) command is used to select reverse jump MCMC, the command takes a 

prior and prior parameters. For example, the command below uses reverse jump with an 

exponential prior with a mean of 10. The second command uses reverse jump with a hyper 

exponential prior where mean of the exponential is drawn from a uniform 0 - 100 

 RevJump exp 10  

Or  

 RJHP exp 0 100 

 

For the general case 
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 RevJump Prior Name Prior parameters 

Or 

 RJHP Prior Name Prior parameters range 

 Where the prior name is “exp”, “gamma”, “uniform”, “beta” 

 Parameter restrictions can be used in combinations with Reverse Jump, if you would like to 

set parameters to specific values or use a specific set of restrictions.  

Multistate ML example  
 

Start the program using the “Artiodactyl.trees” tree file and the “Artiodactyl.data” file. The following 
screen should be presented to you 
 

Please select the model of evolution to use. 

1)      MultiState 

 

Select 1 for the MultiState model 
 

Please select the analysis method to use. 

1)      Maximum Likelihood. 

2)      MCMC 

 

Select 1 for maximum likelihood analysis.  
 
The default options will be printed, displaying basic information. This should always be checked to 
ensure it is what you expect.  
 
Type run   
 
The analysis will start. The options for the run will be printed followed by a header row. The header 
row is the  

Header  Output 

Tree No The tree number, 1-500 for this data 

Lh Maximum likelihood value for the tree 

qDG The transition rate from D to G 

qGD The transition rate from G to D 

Root P(D) The probability the root is in state D 

Root P(G) The probability the root is in state G 

For each tree in the sample a line of output will be printed. Once all trees have been analysed the 
program will terminate.  

Multistate MCMC example  
Start the program using the “Artiodactyl.trees” tree and “Artiodactyl.data” data file, select 

multistate (1) and MCMC (2). The default options will be printed.  
 

Set all priors to an exponential with a mean of 10, and start the chain, using the commands 
below.  

PriorAll exp 10 
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Run 

 

A header will be printed  
Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Harmonic Mean Running harmonic mean 

Tree No Current tree number 

qDG Transition rate from D to G 

qGD Transition rate from G to D 

Root P(D) Probability the root is in state D 

Root P(G) Probability the root is in state G 

 
Followed by some output. 
Iteration Lh Harmonic 

Mean 
Tree No qDG qGD Root 

P(D) 
Root 
P(G) 

11000 -7.93307 -7.93307 187 3.702561 2.5446 0.351023 0.648977 

12000 -8.98846 -8.59398 495 3.120973 4.914959 0.475628 0.524372 

13000 -8.37416 -8.52594 99 3.799383 4.489798 0.417393 0.582607 

14000 -10.2806 -9.31231 95 17.07613 27.54498 0.499972 0.500028 

15000 -10.7122 -9.78912 95 6.945588 5.865219 0.48436 0.51564 

… … … … … … … … 

1006000 -8.94481 -9.90388 400 8.97661 8.407563 0.473517 0.526483 

1007000 -8.53244 -9.90313 147 0.33644 1.477702 0.012116 0.987884 

1008000 -8.03562 -9.90228 338 2.454093 3.334973 0.270869 0.729131 

1009000 -8.41139 -9.90151 107 2.217407 4.183507 0.365974 0.634026 

1010000 -9.72812 -9.90135 61 7.50541 9.538785 0.484114 0.515886 

 Output from the chain is tab separated and is designed to be using in program such as excel 

and JMP. Run to run output will vary and is depend on the random seed used. 

Parameter restriction example  
 The previous example assumed that the transition rates from state D to G (qDG) and from 

state G to D (qGD) were different and both were estimated. To test if qDG and qGD are significantly 

different from each other, re-run the analysis restricting qGD to take the same value qDG. The same 

restrict command can be used in ML analysis.  

PriorAll exp 10 

Restrict qDG qGD 

Run 

 

 The output should be very similar but the rate parameters (qDG and qGD) should take the 

same value each iteration. The significance of the test can be found by calculating a Bayes Factor 

using the either the harmonic means or the steppingstone sampler (see page 11).  

 If the marginal likelihood from the analysis where qDG ≠ qGD is -9.417807 and the marginal 

Lh is -8.261050 where qDG = qGD. The complex model is qDG ≠ qGD, as it has one more parameter 

than the simple model, qDG = qGD. The Bayes Factor (BF) is given as 
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Log BF = 2(log marginal likelihood complex model – log marginal likelihood simple model) 
 Log BF =  2(-9.417807 - -8.261050)   
 Log BF =  -2.313514 
 The BF is less than two so the simpler model should be favoured (see Gilks, Richardson et al. 

(1996) or table on page 12) 

Note: Values of the marginal likelihood calculated from the harmonic means and 

steppingstone sampler will vary between runs, depending on the random seed and how long the 

chain is run for, values are only for illustrative purposes. Harmonic mean estimate can vary from run 

to run. For reliability use multiple independent runs and allow them to run hundreds or even billions 

of iterations. Some authors are highly critical of harmonic means. The stepping stone (Xie, Lewis et 

al. 2011) estimation seem more stable. These values are only used to demonstrate basic model 

testing.  

Ancestral state reconstruction Multistate / discrete  
 

 The AddMRCA and AddNode commands are used to reconstruct ancestral states in 
multistate and discrete models. The syntax for the two commands is similar. The commands take a 
tag which is used to identify the reconstructed node in the output, and a list of taxa names or taxa 
number which define the node. BayesTrees (http://www.evolution.reading.ac.uk/BayesTrees.html) 
is a graphics tree viewer which can be used to generate the command by clicking on the appropriate 
node. Using the “Artiodactyl.trees” tree and “Artiodactyl.data”, select multistate and MCMC 
 
 The two commands below add a node to reconstruct, defined as the common ancestor of 
Porpoise Dolphin FKWhale and Whale. The node is called “Node1”. The second command is identical 
but uses the taxa number instead of taxa names to define the node.  
 

AddNode Node1 Porpoise Dolphin FKWhale Whale 

 AddNode Node1 5 6 7 8  
 

 run the program with the following commands  
 

AddNode Node1 Porpoise Dolphin FKWhale Whale 

Run 

 

Two new columns should be added to the output “Node1 P(D)” and “Node1 P(G)”, these 
represent the probability of reconstructing a D or a G at Node1.   
 
 BayesTraits uses a sample of trees and some nodes may not be present in all trees, the node 
defined by Sheep, Goat, Cow, Buffalo and Pronghorn is only present in 58% of the trees.  
 

PriorAll exp 10 

Res qDG qGD 

AddNode VarNode Sheep Goat Cow Buffalo Pronghorn 

Run 

 

The posterior probability of node reconstruction will not be present in some trees, some 
samples of the chain will recorded the ancestral sate as "--" because the node is not present in those 
trees.  
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 The MRCA command reconstructs the Most Recent Common Ancestor, while a MRCA will be 
present in every tree it may not be the same node (see (Pagel, Meade et al. 2004) for more details). 
Rerun the analysis using MRCA.  

 

AddMRCA VarNode Sheep Goat Cow Buffalo Pronghorn 

Run 

 

 Any number of nodes can be reconstructed in a single analysis without any effect on each other.  

Fixing node values / fossilising  
 Internal nodes can be set to take a fixed value, if external information is available or to test if 
the value of one state is significant. The fossil command takes a node name, a state to fossilise it in 
and a list of taxa which define the node, nodes are found using the most recent common ancestor 
method. The command below fossilises a node defined by sheep, goats, cows, buffalo and 
pronghorn to state D.  
 

Fossil Node01 D Sheep Goat Cow Buffalo Pronghorn 

 

 Be aware that fossilising nodes will have an effect on the models, by forcing a node to take a 
specific value the models parameters will be affected.   
 
 Fossilising states for discrete models requires a number instead of a state, as there are more 
combinations of fossil sates. The table below show the numbers and their corresponding states. X 
denotes the likelihood is left unchanged, - sets the likelihood to zero.  
 

Number 0,0 0,1 1,0 1,1 

0 X - - - 

1 - X - - 

2 - - X - 

3 - - - X 

     

10 X X - - 

11 X - X - 

12 X - - X 

13 - X X - 

14 - X - X 

15 - - X X 

     

20 X X X - 

21 X X - X 

22 X - X X 

23 - X X X 

 

Discrete examples 
 Discrete is used to test if two binary traits are correlated, significance is established by 

comparing the likelihoods of two models, one which assumes the traits evolve independently, with 

one which assumes the traits evolution is correlated. The examples focus on MCMC but ML can also 

be used. The examples use a sample of 500 primate trees (“Primates.trees”) and a data set of two 
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binary traits, estrus advertisement and multi-male mating (“Primates.txt”). Two binary traits have 4 

possible states, written as “0,0”, “0,1”, “1,0” and “1,1”.  

Discrete independent 
  The independent model assumes the two traits evolve independently, e.g. the transition 

from 0  1 in the first trait is independent of the state of the second trait. The independent model 

has 4 rate parameters, alpha1, beta1, alpah2 and beta2.  

 

Parameter Symbol Trait Transitions 

alpha1 1 1 0  1 

beta1 1 1 1  0 

alpha2 2 2 0  1 

beta2 2 2 1  0 

 
 0,0 0,1 1,0 1,1 

0,0 - 2 1 0 

0,1 2 - 0 1 

1,0 1 0 - 2 

1,1 0 1 2 - 

  

Start BayesTraits with the tree file “Primates.trees” and data file “Primates.txt”, select the 

independent model (2) and MCMC analysis (2). Set all the priors to an exponential with a mean of 10 

and run the analysis, this mean was found by analysing the tree using ML and studding the resulting 

parameter rate estimates, using the following commands.  

 PriorAll exp 10 

 Run 
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  The output will be similar to the multistate analysis, the header will contain.  

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Harmonic Mean Running harmonic mean 

Tree No Current tree number 

alpha1 The alpha1 transition rate 

beta1 The beta1 transition rate 

alpha2 The alpha2 transition rate 

beta2 The beta2 transition rate 

Root – P(0,0) Probability the root is in state 0,0 

Root – P(0,1) Probability the root is in state 0,1 

Root – P(1,0) Probability the root is in state 1,0 

Root – P(1,1) Probability the root is in state 1,1 

Discrete dependent 
 The dependent model assumes that the traits are correlated and the rate of change in one 

trait is dependent on the state of the other. The dependent model has 8 parameters, q12, q13, q21, 

q24, q31, q34, q42 and q43. Double transitions from state 0,0 to 1,1 or from 0,1 to 1,0 are set to 

zero,  

Parameter Dependent on Trait Transitions 

q12 Trait 1 = 0 2 0  1 

q13 Trait 2 = 0 1 0  1 

q21 Trait 1 = 0 2 1  0 

q24 Trait 2 = 1 1 0  1 

q31 Trait 2 = 0 1 1  0 

q34 Trait 1 = 1 2 0  1 

q42 Trait 2 = 1 1 1  0 

q43 Trait 1 = 1 2 1  0 
 
 

 0,0 0,1 1,0 1,1 

0,0 - q1,2 q1,3 0 

0,1 q2,1 - 0 q2,4 

1,0 q3,1 0 - q3,4 

1,1 0 q4,2 q4,3 - 

 
 

Start BayesTraits with the tree file “Primates.trees” and data file “Primates.txt”, select the 

dependent model (3) and MCMC analysis (2). Set all the priors to an exponential with a mean of 10 

and run the analysis, using the following commands.  

 PriorAll exp 10 
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 Run 

  

The output will be very similar to the independent model except that the dependent 

parameters are estimated instead of the independent.  

 To test if the traits are correlated calculate a Bayes Factor (see page 11) between the 

independent and dependent models. If the independents models marginal likelihood is -45.51 and 

the dependent harmonic mean is -42.47 

Log BF = 2(log marginal likelihood complex model – log marginal likelihood simple model) 
Log BF =  2(-42.47 - -45.51)   

 Log BF =  6.08 
  

 The Log BF of 6 suggests there is strong evidence for correlated evolution. Marginal 
likelihoods vary between runs and it is important to get a stable estimate by using multiple 
independent runs and long chains.  

Reverse Jump MCMC and model reduction 
 Given the size of the data and complexity of the model not all parameters may be 

statistically distinguishable. The previous parameter restriction example demonstrated how a model 

could be simplified by setting parameters equal to each other and how to test if restrictions were 

significant. There are 51 possible restrictions for the independent model and over 21,000 for the 

dependent model, which would take a long time to test. Reverse jump MCMC (RJ-MCMC) offers an 

alternative by integrating results over the model space, weighting naturally by their probabilities, 

allowing the user to select viable models and parameters, see Pagel, Meade et al. (2004) for more 

information.  

 The reverse jump command takes a prior as a parameter, one prior must be applied to all 

parameters, the command below uses an RJ MCMC model with an exponential prior with a mean of 

10 

 RJ exp 10 

 RJ MCMC can also be used with a hyper-prior.  

 RJHP exp 0 100 

 Run the primates data and tree, with the dependent model and MCMC analysis, using the 

commands below 

RJ exp 10 

Run 
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 The output will contain 4 new columns.  
 

Header  Output 

No Of Parameters Number of parameters  

No Of Zero Number of parameters set to zero 

Model string A model string showing parameter restrictions 

Dep / InDep A flag showing if the model is dependent (D) 
or independent (I) 

   
 Model strings are used to characterise the models restrictions, the string start with ' and is followed 
by numbers indicating which parameters are in which groups or a Z if the parameters have been restricted to 
zero. For example the modelling string for a dependent model will have 8 components one for each 
parameter, the model string “'1 Z 0 0 0 1 1 Z”, has two parameters and two rates set to zero. The first group 
consists of the 1st, 6th and 7th parameters (q12, q34 and q42), the second group is formed of the 3rd, 4th and 5th 
parameters (q21, q24 and q31), and the 2nd and 8th parameter is set to zero. This can be checked against the 
parameter estimates.  
 
 To test if a data set is correlated running an independent model using RJ MCMC and a dependent 

model using RJ MCMC.   

Covarion model  
 BayesTraits implements a basic on / off covarion model as described by (Tuffley and Steel 

1998), the model requires one additional parameter the switching rates between the on / off states. 

The model allows the rate of evolution to vary through the tree. The “CV” command is used to 

activate the covarion model, two additional columns will be included in the output, “Covar On to 

Off” and “Covar Off to On”. The switching rate between the on and off states will be the same.  

Continuous: Random Walk (Model A) ML 
 Start BayesTraits with the tree file “Mammal.trees” and data file “MammalBody.txt”, the 

tree file is a sample of 50 mammal trees and the data is there corresponding body size, the trees and 

data are for illustrative purposes and are not accurate or a good sample. Select model A (4) and 

maximum likelihood analysis (1), start the analysis with  

 Run 

 

 Basic information will be printed followed by a header   
Header  Output 

Tree No The tree number, 1-50 for this data 

Lh Maximum likelihood value for the tree 

Alpha 1 The phylogenetically correct mean of the data, also the estimated root value 

Sigma^2 1 The phylogenetically corrected variance of the data 

Continuous: Random Walk (Model A) MCMC 
 Start BayesTraits with the tree file “Mammal.trees” and data file “MammalBody.txt”, select 

Model A (4) and MCMC (2), stat the analysis with 
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Run 

 

 Basic information will be printed followed by a header   

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Harmonic Mean Running harmonic mean 

Tree No Current tree number 

Alpha Trait 1 The phylogenetically correct mean of the data, also the estimated root value 

Sigma^2 1  The phylogenetically corrected variance of the data 

Testing trait correlations: continuous 
 To test if two traits are correlated, the results from two analysis are compared, one in which 

a correlation is assumed (the default) and one where the correlation is set to zero. Run an analysis 

using the tree file “Mammal.trees” and a data file “MammalBrainBody.txt”, containing brain and 

body size data. Select model A (4) and MCMC analysis (2), stat the analysis with 

 Run  

 Basic information will be printed followed by a header   

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Harmonic Mean Running harmonic mean 

Tree No Current tree number 

Alpha 1 The phylogenetically correct mean of the first trait 

Alpha 2 The phylogenetically correct mean of the second trait 

Sigma^2 1 The phylogenetically corrected variance of the first trait 

Sigma^2 2  The phylogenetically corrected variance of the second trait 

R Trait 1 2 R correlation between trait 1 and trait 2 

 

 Rerun the analysis but force the correlation to be zero using the TestCorrel (TC) command.  

 TestCorrel 

 Run 

  

The output should be similar except the “R Trait 1 2” value will be 0. The significance of the 

correlation can be tested by computing a Bayes Factor between the two runs. If the analysis allowing 

a correlation produced a marginal likelihood of -80.845 and the analysis with the correlation fixed to 

zero gave a marginal likelihood of -140.58, this would lead to a log Bayes Factor of 119.47, 

suggesting they are highly correlated.  

Continuous: Directional (Model B) MCMC 
The directional model can be used to test if there is a directional change in a traits evolution, 

by testing if a trait is correlated with the root to tip distance of the taxa. Model B cannot be used 

with ultrametric trees as there is no root to tip variation between taxa. A fictional data set 

“MammalModelB.txt” can be used to test if there is a significant directional trend by preforming a 
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model test between Model A and Model B. If Model B is significant these is signal for a directional 

trend in the data.  

Continuous: Regression 
The continuous regression model is used to perform regression analysis, test trait 

significance and predict unknown values. The regression model takes two or more traits, the first 

trait is assumed to be the dependent variable. MammalBrainBodyGt.txt is a dataset of mammal 

brain, body and gestation time. Run BayesTraits with the “Mammal.trees” tree file and 

“MammalBrainBodyGt.txt” data. Select the regression model (6) and MCMC (2) and run the analysis. 

The header will contain.  

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Harmonic Mean Running harmonic mean 

Tree No Current tree number 

Alpha Intercept 

Beta Trait 2 Regression coefficient for trait 2 

Beta Trait 3 Regression coefficient for trait 3 

Var Brownian motion variance  

R^2 R^2 

SSE Sum of squared error 

SST Total sum of squared 

s.e. Alpha Standard error Alpha 

s.e. Beta-2 Standard error Beta-2 

s.e. Beta-3 Standard error Beta-3 

Testing trait significance  
 There are a number of ways to test if a trait is significant in the regression model, the first is 

to compare marginal likelihood (MCMC) or likelihood ratios (ML) from runs with and without the 

trait. The second is the ratio of the time the regression coefficient is crosses the zero point, if a 

regression coefficient is well supported it will not switch from positive to negative, or vice versa.  

Continuous: Estimating unknown values 
 Continues models can be used to estimate unknown values on the tree, internal nodes or 

tip. Estimating unknown values is a two-step process, first a distribution of models is estimated from 

available data, secondly the models are used to estimate unknown values. The two step process 

prevent estimated data from affecting the model parameters. Estimating unknown values can be 

used with model A, model B and the regression model but only using MCMC.  

The “SaveModels” command is used to save models to a specified file, the “LoadModels” 

command is used to load the models into BayesTraits. The same model parameters, including tree 

transformations, has to be specified when creating a model file and when estimating unknown 

values, only very basic error checking is implemented.  
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Example: Estimating unknown values internal nodes 
 Start BayesTraits with the “Mammal.trees” file and “MammalBody.txt” data. Select model A 

(4) and MCMC analysis (2). Save the models and run the analysis with the commands below, the 

models will be saved into a file called “MamBodyModels.bin” 

 SaveModels MamBodyModels.bin 

 Run  

 

 Once the program has finished a file called “MamBodyModels.bin” will be created.  
  

 To estimate data, start BayesTraits with the same tree and data files, select model A (4) and 
MCMC analysis (2). The AddMRCA command is used to estimate internal node values, it takes a node 
label used to identify the node in the output and a list of taxa which define the node. The commands 
below load the model file, reconstruct a node called “Node-01” defined by five taxa, reconstruct a 
node called “Node-02” defined by four taxa, and run the analysis.  
  
 LoadModels MamBodyModels.bin 

 AddMRCA Node-01 Whale Hippo Llama Ruminant Pig 

AddMRCA Node-02 Mouse Rat Hystricid Caviomorph  

Run 

The output header will contain  
Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Harmonic Mean Running harmonic mean 

Tree No Current tree number 

Model No Current model number from the model file 

Alpha Trait 1 Phylogenetic mean 

Sigma^2 1  Brownian motion variance 

Est Node-02 - 1 Estimated values for Node-02 trait 1  

Est Node-01 - 1 Estimated values for Node-01 trait 1 

 

Example: Estimating unknown values for tips 
 Data for taxa, as well as internal nodes can be estimated. A data file 
“MammalBrainBodyNoTapir.txt” has been created with the data for tapir missing ‘-‘. Run BayesTraits 
with the “Mammal.trees” tree file and “MammalBrainBodyNoTapir.txt” data file. Select the 
regression model (6) and MCMC analysis (2). Use the command below to save the models to a file 
and run the analysis  
 
 SaveModels MamRegModels.bin 

 Run  

 

 A data file “MammalBrainBodyPredTapir.txt” which contains the tapir body size but with the 
brain size set to “?”, a question mark in the data is used to indicate the value should be estimated. 
Run an analysis using the “Mammal.trees” tree file and “MammalBrainBodyPredTapir.txt” data file. 
Select the regression model (6) and MCMC analysis (2). Use the command below to load the models 
and run the analysis 
 
 LoadModels MamRegModels.bin 

 Run  
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 The output will contain a column labelled “Est Tapir – Dep”, with the predicted tapir brain 
size, the predicted brain size should be roughly 2.1 ± 0.15, the actual brain size is 2.2. 
 

Independent contrast 
 BayesTraits implements a range of independent contrast models, independent contrast 

offers a significantly faster alterative to Generalised Least Squares (GLS) methods for large data sets. 

Independent contrast models can be run using MCMC or ML. Start BayesTraits with the tree file 

“Mammal.trees” and data file “MammalBrainBody.txt”. Select Independent contrast (7) and MCMC 

(2) and run the analysis. The independent contrast model assumes sites are independent, e.g the 

covariance is set to zero. The output will contain  

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Harmonic Mean Running harmonic mean 

Tree No Current tree number 

Alpha 1 Phylogenetic mean of the first trait 

Alpha 2 Phylogenetic mean of the second trait 

Sigma^2 1 Brownian motion variance for the first trait 

Sigma^2 2 Brownian motion variance for the second trait 

Variable rates model 
 The variable rates model allows the rate of change to vary threw time and identifies areas of 

the tree where the rate of evolution differed significantly, for an in-depth description see (Venditti, 

Meade et al. 2011). The variable rates model uses RJ MCMC to identify areas of the tree in which the 

rate of evolution varies significantly. The model only works with a single tree and requires MCMC 

analysis. A tree “Marsupials.trees” of roughly 250 marsupials and there body sizes “Marsupials.txt” is 

included. Start BayesTraits with the tree and data file, select Independent contrast (7) and MCMC 

(2), run the variable rates analysis with the commands below.  

 VarRates 

 Run 

 The log file will contain  

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Harmonic Mean Running harmonic mean 

Tree No Current tree number 

Alpha 1 Phylogenetic mean of the first trait 

Sigma^2 1 Brownian motion variance for the first trait 

No VarRates Number of areas of the tree with variables rates 

 

 Other data files are created, “Marsupials.txt.PP.trees” contains the trees scaled by the rate 

of change, areas which are stretched have an increased rate of change, areas which are shrunken 

have a decreased rate. The file “Marsupials.txt.PP.txt” contrails a detailed description of the 
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changes, the format of the file is, line 1, number of taxa, followed by a unique  taxa ID and taxa 

name. The second part is the number of internal nodes, followed by a list of internal nodes 

consisting of a unique node ID, branch length (-1 for root), number of taxa which define the node 

and the list of taxa ID. The third section details the results of the chain, the columns are  

 

Header  Output 

It Iteration of the chain 

Lh Likelihood of the chain 

Lh + Prior Likelihood + prior 

No Pram Number of change to rate of the tree 

Alpha Estimated phylogenetic mean 

Sigma^2 Brownian motion  

Alpha Scale Scale of the prior (unchanging, for diagnostics only) 

 For each change of rate of the tree (No Param) there is 

Header  Output 

Node ID The node if the change is on 

Scale The scale of the change 

Crate It The iteration the change was created on 

Node / Branch  If the change is a node or branch scale 

 The .PP.txt file is designed to be computer read, post processing tools will shortly be made 

available to extract useful information from the file.  

Independent contrast: Correlation 
 The independent contrasts correlation model allows correlations to be tested between two 

traits using the independent contrast framework. 

 Start BayesTraits with the tree file “Mammal.trees” and data file “MammalBrainBody.txt”. 

Select Independent Contrast: Correlation (8) and MCMC (2) and run the analysis. The default analysis 

assume the trait are correlated, the output will contain  

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Harmonic Mean Running harmonic mean 

Tree No Current tree number 

Alpha 1 Phylogenetic mean of the first trait 

Alpha 2 Phylogenetic mean of the second trait 

Sigma^2 1 *Brownian motion variance for the first trait 

Sigma^2 2 *Brownian motion variance for the second trait 

CoVar 1-2 *The covariance between the first and second trait 

 

 To test a correlation between two traits rerun the analysis using the “TestCorrel” (TC) 

command to set the co-variance to zero and calculate a Bayes Factor. 
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* Due to the independent contrast framework the variance and covariance parameter are set to 

their maximum likelihood values even when using MCMC.  

Independent contrast: regression  
 The independent contrast models supports simple and multiple regression, using ML and 

MCMC. The first trait is assumed to be the dependent variable, subsequent traits are assumed to be 

the independent variables. Run an analysis using the tree file “Mammal.trees” and the data file 

“MammalBrainBodyGt.txt”. Select “Independent Contrast: Regression”, 9 and MCMC 2, and run the 

analysis. The log file will contain   

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Harmonic Mean Running harmonic mean 

Tree No Current tree number 

Alpha *Analytical value of Intercept 

Beta 1 Regression coefficient for trait 2 

Beta 2 Regression coefficient for trait 3 

 

* Due to the independent contrast framework the maximum likelihood intercept value is used, 

calculated from the regression coefficient, even when using MCMC, it is not an estimated value.   

 

Discrete: Covarion 

 The discrete covarion model removes the assumption that a trait is either correlated or not 

threw out the tree. It simultaneously fits both an independent and dependent model and uses a 

covarion method to switch between them.  

 Start BayesTraits with the primates tree and dataset, select the discrete covarion model (10), 

MCMC (2) and run the analysis.  

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Harmonic Mean Running harmonic mean 

Tree No Current tree number 

alpha1 The independent alpha1 transition rate 

beta1 The independent beta1 transition rate 

alpha2 The independent alpha2 transition rate 

beta2 The independent beta2 transition rate 

q12 The dependent q12 transition rate 

q13 The dependent q13 transition rate 

q21 The dependent q21 transition rate 

q24 The dependent q24 transition rate 

q31 The dependent q31 transition rate 

q34 The dependent q34 transition rate 
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q42 The dependent q42 transition rate 

q43 The dependent q43 transition rate 

qDI The switching rate between the dependent and independent models 

qID The switching rate between the independent and dependent models 

Root - I P(0,0) Probability the root is in independent state 0,0 

Root - I P(0,1) Probability the root is in independent state 0,1 

Root - I P(1,0) Probability the root is in independent state 1,0 

Root - I P(1,1) Probability the root is in independent state 1,1 

Root - D P(0,0) Probability the root is in dependent state 0,0 

Root - D P(0,1) Probability the root is in dependent state 0,1 

Root - D P(1,0) Probability the root is in dependent state 1,0 

Root - D P(1,1) Probability the root is in dependent state 1,1 

 

 The discrete covarion model supports RJ MCMC, to reduce the large number of parameters 

required.  

Tree transformations, kappa, lambda, delta, OU 
  BayesTraits supports a number of tree transformations including, kappa (κ), lambda (λ), 

delta (δ) and Ornstein Uhlenbeck (OU) for both continuous and independent contrast models. These 

scaling parameters allow tests of the tempo, mode, and phylogenetic associations of trait evolution. 

Kappa, lambda, and delta take the value 1.0 by default, OU take the value 0. These values 

correspond to assuming that the phylogeny and its branch lengths accurately describe a constant-

variance random walk model A or B. However, if trait evolution has not followed the topology or the 

branch lengths, these values will depart from 1.0. When they do, incorporating them into the 

analysis of the data (e.g., when estimating the correlation between two traits) significantly improves 

the fit of the data to the model. 

The kappa parameter differentially stretches or compresses individual phylogenetic branch 

lengths and can be used to test for a punctuational versus gradual mode of trait evolution. Kappa > 

1.0 stretches long branches more than shorter ones, indicating that longer branches contribute more 

to trait evolution (as if the rate of evolution accelerates within a long branch). Kappa < 1.0 

compresses longer branches more than shorter ones. In the extreme of Kappa = 0.0, trait evolution 

is independent of the length of the branch. Kappa = 0.0 is consistent with a punctuational mode of 

evolution. 

The parameter delta scales overall path lengths in the phylogeny - the distance from the 

root to the species, as well as the shared path lengths. It can detect whether the rate of trait 

evolution has accelerated or slowed over time as one moves from the root to the tips, and can find 

evidence for adaptive radiations. If the estimate of Delta < 1.0, this says that shorter paths (earlier 

evolution in the phylogeny) contribute disproportionately to trait evolution - this is the signature of 

an adaptive radiation: rapid early evolution followed by slower rates of change among closely 

related species. Delta > 1.0 indicates that longer paths contribute more to trait evolution. This is the 

signature of accelerating evolution as time progresses. Seen this way, delta is a parameter that 

detects differential rates of evolution over time and re-scales the phylogeny to a basis in which the 

rate of evolution is constant. 
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The parameter lambda reveals whether the phylogeny correctly predicts the patterns of 

covariance among species on a given trait. This important parameter in effect indicates whether one 

of the key assumptions underlying the use of comparative methods - that species are not 

independent - is true for a given phylogeny and trait. If a trait is in fact evolving among species as if 

they were independent, this parameter will take the value 0.0 and indicate that phylogenetic 

correction can be dispensed with. A lambda value of 0.0 corresponds to the tree being represented 

as a star or big-bang phylogeny. If traits are evolving as expected given the tree topology and the 

random walk model, lambda takes the value of 1.0. Values of lambda = 1.0 are consistent with the 

constant-variance model (sometimes called Brownian motion) being a correct representation of the 

data. Intermediate values of lambda arise when the tree topology over-estimates the covariance 

among species.  

The value of lambda can differ for different traits on the same phylogeny. If the goal is to 

estimate the correlation between two traits then lambda should be estimated while simultaneously 

estimating the correlation. If, on the other hand, the goal is to characterise traits individually, a 

separate lambda can be estimated for each. 

The Ornstein Uhlenbeck (OU) transform has traditionally been associated with stabilising 

selection, with the OU parameter measures the strength of a return to a theoretical optimum 

(Hansen 1997) this may be due to other factors and care should be taken when using and 

interpreting OU results. OU parameter values of zero correspond to the default values, parameter 

values >0 are evidence of an OU process. The OU module should only be used with ultrametric 

trees, the correction for non-ultrametric trees will be available soon.  

Parameter Action 0 <1 1 >1 

lambda Assess contribution 
of phylogeny 

Star phylogeny 
(species 

independent) 

phylogenetic 
history has 

minimal effect 

default 
phylogeny 

not defined 

kappa Scale branch 
lengths in tree 

punctuational 
evolution 

stasis in longer 
branches 

default 
gradualism 

longer 
branches 

more change 

delta Scale total path 
(root to tip) in tree 

not defined temporally 
early change 

important 
(adaptive 
radiation) 

default 
gradualism 

temporally 
later change 

(species 
specific 

adaptation) 

OU  default >0  evidence of an  OU process 

Three scaling parameters and their interpretation when applied to trait evolution on a phylogeny 
 

All three parameters can be estimated using ML or MCMC, the syntax for the three 
parameters is the same, either the scaling parameter on its own to toggle its estimation (they are 
not estimated by default, set to 1.0) or the scaling parameter followed by a number to fix the 
parameter to a given value.  

 

The first command estimates lambda, the second fixes it to 0.5 
Lambda 

Lambda 0.5 

 
 

The first command estimates kappa, the second fixes it to 0.5 
Kappa 
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Kappa 0.5 

 

The first command estimates delta, the second fixes it to 0.5 
Delta 

Delta 0.5 

 
The first command estimates OU, the second fixes it to 0.5 
OU 

OU 0.5 

 

Model testing can be used to determine if a transform is significant or if a value of transform 
is significant, e.g. is lambda significantly different from 0. 
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Alternative Builds 

Precision Quad  
Computers represent number using a specific number of bits, typically floating point 

numbers used in BayesTraits are double precision requiring 64 bits. As the amount of data available 

to store a number is limited, only number within a specified range can be stored, double precision 

supports numbers as small as 2.2x10-308 or rough -708 when on a log scale. For discrete and 

multistate models each site cannot have a likelihood less than -708 log units or the likelihood 

underflows and is rounded to zero, creating a likelihood of-∞ when logged. This is partially a 

problem for large trees (many hundreds or thousands of taxa) or when analysis data with a large 

number of states.  

To solve this problem BayesTraits supports quadruple precision number, allowing for smaller 

likelihood values to be calculated but requiring longer runtimes, if you are experiencing an 

underflow problem try using a quadruple precision version of BayesTraits, these are labelled quad. 

Quadruple precision supports likelihoods as low as roughly -11355 log units per site, this may not be 

enough for very large trees. A version of BayesTraits with high precision than quadruple is available 

if required.  

Multi Core  
 The Multi Core version of BayesTraits allows the likelihood calculation, the computationally 

intensive part of the program, to be run over multiple cores for multistate and discrete models, this 

can speed up the runtime of the program. The speed increase is data set and model dependent, 

speed improvements are uncommon on tress of less than 1000 taxa, as the time needed for 

coordinating the cores out ways there speed improvement. For larger trees the speed improvement 

is significant, especially if quadruple precision is needed, see above. As the OpenMP version will not 

always give a speed increases, it is worth checking the performance of the serial versions of 

BayesTraits with the Multi Core version. The “cores” command can be used to specify the number of 

cores to use, see command list below, this can be used to tune performance.  

OpenCL 
 OpenCL allows computationally intestine operations to be performed on graphics hardware, 

which can give large speed increases, especially for big trees, typically thousands of taxa. To use 

OpenCL you need three things, graphics hardware that supports OpenCL, an OpenCL driver installed 

and the OpenCL version of BayesTraits.  

 OpenCL graphics hardware 

 The Khronos group, who oversee the standard, keep a list of OpenCL compatible hardware 

(http://www.khronos.org/conformance/adopters/conformant-products/). Typically any AMD and 

NVIDA graphics cards purchased in the last couple of year should support OpenCL but please check. 

Each month hundreds of graphics cards are released with different processors, memory and 

interfaces. The web site CompuBench (www.compubench.com) provides a compressive comparison 

of OpenCL performance for different graphics cards.   

 It is possible to get over a 40 fold speed increases compared to Version 1, the performance 

increase is heavily depend on a number of factors, including tree and data size, model type and 

http://www.khronos.org/conformance/adopters/conformant-products/
http://www.compubench.com/
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complexly, the underlying hardware both graphics cards and system, and the drivers and operating 

system used. As with the OpenMP version of BayesTraits it is possible for the OpenCL version to run 

slower. 

 OpenCL driver 

 An OpenCL driver is software which provides a level of abstraction between the hardwere 

and software, allowing a program written using OpenCL to run on a larger number of different 

hardware platforms. The OpenCL driver is supplied by the hardware manufacture, normally AMD or 

NVIDIA, on some systems it comes with the graphics driver and does not need to be installed 

separately. If the OpenCL version of BayesTraits fails to start or reports and error on before the run 

starts, suitable graphics hardware or OpenCL driver may be missing.  
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Common problem / Frequently Asked Questions 
 

 1) Problems starting the program  

 Q) Double clicking on the program does not work.  
A) BayesTraits is run from the command line and not by double clicking on it. See 

“Running BayesTraits” section.  
  

2) Common tree and data errors 

A) Tree must be in nexus format with a valid translate block. Use the example files as a 
template.  

B) Tree descriptions must have number and not taxa name in them.  
C) Trees must be rooted.  
D) Trees and data must be encoded using ASCII format not Unicode 
E) The error “Could not load data for taxa X”, this error is caused by a taxa being specified 

in the tree file but not in the data file. Check spelling and taxa numbers 
F) The error “Tree file does not have a valid nexus tag.” Is because a nexus tag is not found 

in the tree file. Possible causes are specifying the data file before the tree file.  

 

3) “Memory allocation error in file …” 

Error message “Memory allocation error in file …”, is a catch all memory allocation error, the 
two main causes of memory allocation errors are running out of memory, this can be due to 
too many trees in the tree file or a complex memory intensive models. Check the programs 
memory usage, if you have a 64 bit OS use the 64 bit version of the program. Try running the 
program with a smaller number of trees and simpler models. The second cause of the crash 
is due to programming errors, if you believe this is the case, please send along the tree file, 
data file and set of command used.  
 

4) Chain is not mixing between trees.  

This problem can be caused when one tree’s likelihood is significantly better than other 
trees in the sample. Trees are sample in proportion to their likelihood, if one is much better 
than the rest it will be sample much more often. This can be a particular problem with a 
large number of trees when the topology is poorly supported, a chance combination create a 
much better likelihood preventing the chain from mixing. To test if this is the problem run 
the sample using ML, this will determine if the tree which the chain gets stuck on has the 
best likelihood. Two options are available, the first is to remove the tree from the sample if 
you believe it is anomalous for some reason. The second is to use the Equal Tree command 
to force the chain to spend an equal amount of time on each tree. The equal tree command 
will produce a separate posterior sample of rates, parameters and ancestral states per tree, 
instead of a single set integrated over the sample of trees.  

 

 5) Cannot find a valid set of starting parameters. 

A valid set of parameters to start the chain cannot be found. Two main causes of this error 

are 

i) The size of the tree and / or size of the model cause an underflow error and so a 

valid starting likelihood cannot be found. See precision section (under information 
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for a full description and solution), this is a particular problem with large trees and 

discrete / multistate models.  

 

ii) The model may be invalid, the combination of restrictions, priors or data may 

produce an invalid model, for example setting all the transition rates to zero. Try 

using simpler models, restricting the number model to a single transition rate and 

slowly building to more complex models.  

6)  Too many free parameters to estimate 

The number of free parameters is limited to 25 or fewer for maximum likelihood. Likelihood 

methods allow parameters to be estimated from data, comparative methods data can be 

limited, typically consisting of a one or more site for a number of taxa. This limits the 

number of parameters which can be accurately estimated form the data. Accurately 

estimating 25 or more parameters would require a vast amount of data. So the number of 

free parameters under ML is limited, if you believe your data can support more parameters 

please contact the authors for this limitation to be removed.  

7) Run to run variations 

It is important to run the same analysis a number of times, to check for convergence when 

using MCMC and to ensure that optimal parameter values have been found when using ML. 

Large differences between runs is often a warning sign, commonly this is because of to many 

parameters for the data to support or the parameters create a deceptive likelihood surface, 

for MCMC this can prevent the chain from converging and / or mixing, for ML different runs 

may produce different results. Multiple runs can help identify if this is a problem, for ML 

analysis increasing the number of maximum likelihood tries (MLT) per tree is important, the 

default of 10 gives a balance between speed and accuracy, increasing this number can help if 

there is large run to run variations but also increases the run time.  
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Command List 
 
Command: // 
Purpose: Add a comment. 
Shortcut: # 
Parameters: None 
Example: # This is a comment.  

 

Command: AddMRCA 
Purpose: To reconstruct an internal node using the most recent common ancestor approach 
Shortcut: MRCA 
Parameters: A node name and a list of taxa names or number that define a node to reconstruct. 
Example: AddMRCA Node1 Taxa1 Taxa2 Taxa3 
  MRCA Node1 1 2 3 4 
 
Command: AddNode 
Purpose: To reconstruct an internal node. 
Shortcut: AddN 
Parameters: A node name and a list of taxa names or number that define a node to reconstruct. 
Example: AddNode Node1 Taxa1 Taxa2 Taxa3 

  AddN Node1 1 2 3 4 
 

Command: AlphaZero 
Purpose: Sets the intercept to zero 
Shortcut: AZ 
Parameters: None 
Example: AlphaZero  
 

Command: BurnIn 
Purpose: To set the number of iterations to burn the MCMC chain in for, use -1 for an infinite 

chain. 
Shortcut: BI 
Parameters: An integer 
Example: BurnIn 50000 
  BI -1 
 

Command: CapRJRates 
Purpose: Cap the maximum number of reverse jump rates to use  
Shortcut: Cap 
Parameters: An integer, >0 
Example: CapRJRates 2 

  Cap 1 
 
Command: Cores 
Purpose: Set the number of cores to use, only available with Multi Core builds and discrete / 

multistate models. 
Shortcut: cor 
Parameters: An integer, >1 
Example: cores 2 

  cor 4 
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Command: CoVarion 
Purpose: Turn on/off the convarion model  
Shortcut: CV 
Parameters: None 
Example: CoVarion 

  CV 
 
Command: DataDev 
Purpose: Set the deviation parameter to used when perturbing estimated data. This value 

should be automatically set, modifying the value is not recommended.  
Shortcut: DD  
Parameters: A number, >0  
Example: DataDev 2.0 
  DD 01 
 
Command: Delta 
Purpose: Estimate delta or set it to a fixed value 
Shortcut: DL 
Parameters: None to estimate delta, or a number to fix it to a value 
Example: Delta 
  Delta 0.5 
 
Command: EqualTrees 
Purpose: Force the chain to spend an equal amount of time on each tree in the sample. This 

results in a separate posterior distribution pre tree.  
Shortcut: EQT 
Parameters: Number of iterations to burn each tree in for.  
Example: EqualTrees 20000 

 

Command: EvenRoot 
Purpose: Set midpoint rooting for the sample.  
Shortcut: ER 
Parameters: None 
Example: EvenRoot 

Command: Exit 
Purpose: Exit BayesTraits without running the analysis 
Shortcut: Quit 
Parameters: None 
Example: Exit 

Command: Fossil 
Purpose: Fix an internal node to a specific value 
Shortcut: FO 
Parameters: A name, the value to fossilise the node in and a list of taxa which define the node. 

See the fixing node values section above for more information.  
Example: Fossil AnsNode D 12 13 14 15 16 17 
 Fossil Base 2 Hylobates_gabriellae Hylobates_leucogenys Hylobates_concolor 
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Command: Gamma 
Purpose: Estimate or fix gamma rate heterogeneity.  
Shortcut: GA 
Parameters: The number of gamma categories and an option value to fix the parameter 
Example: Gamma 4 

  Gamma 4 0.5 

 
Command: Help 
Purpose: Print a list of commands, not all are valid / working 
Shortcut: he 
Parameters: none 
Example: Help 

 
Command: HyperPrior 
Purpose: Set a hyper prior on a parameter 
Shortcut: HP 
Parameters: A parameter name, a distribution name, and range to draw each parameter from 
Example: HyperPrior q01 exp 0 100 
 HP q10 gamma 0 100 0 100 
 
Command: HyperPriorAll 
Purpose: Set all priors to a common hyper prior 
Shortcut: HPAll 
Parameters: A distribution name and range to draw each parameter from 
Example: HyperPriorAll Beta 0 100 0 50 

  HPAll Exp 0 200 

Command: Info 
Purpose: Print current options 
Shortcut: in 
Parameters: None 
Example: Info 

 

Command: Iterations 
Purpose: Set the number of iterations to run the chain for 
Shortcut: IT 
Parameters: The number of iterations to run the chain for, or -1 for an infinite chain, use Ctrl+C 

for termination.  
Example: Iterations 1000000 
  IT -1 
 
Command: Kappa 
Purpose: Set the kappa scaling parameter 
Shortcut: KA 
Parameters: None to estimate kappa, or a number to fix it to value 
Example: Kappa  
  KA 0.1 
 
Command: Lambda 
Purpose: Set the lambda scaling parameter 
Shortcut: LA 
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Parameters: None to estimate lambda, or a number to fix it to value 
Example: Lambda 

  LA 0.8 

Command: LoadModels 
Purpose: To load models from a model file, see SaveModels 
Shortcut: LM 
Parameters: A model file name 
Example: LoadModels ModelFile.bin 

Command: MLTries 
Purpose: Set the number of times to find the maximum likelihood values, higher values are 

more consistent but take longer to run 
Shortcut: MLT 
Parameters: Number of maximum likelihood tries, default 10.  
Example: MLTries 35 
  MLT 100 
 
Command: OU 
Purpose: Set the lambda scaling parameter 
Shortcut: OU 
Parameters: None to estimate OU, or a number to fix it to value  
Example: OU 
  OU 3.5 
  
Command: Pis 
Purpose: Set the base frequencies 
Shortcut: Pi 
Parameters: Set the base frequencies estimates, est, emp, uni and none, emp for empirical 

frequencies, uni for uniform and none not to use any (all set to 1).  
Example: Pis emp 
  Pis uni 
  Pis none 
 
Command: Prior 
Purpose: Set the prior for a parameter 
Shortcut: pr 
Parameters: a parameter, a distribution type and parameters, distributions include, beta, gamma, 

uniform and exp 
Example: Prior alpha1 exp 10 
  Prior q01 gamma 10 5 
  Prior q10 Beta 2.5 1 
  Prior q34 Uniform 0 1 
  Prior OU exp 1 
 
Command: PriorAll 
Purpose: Set the prior for all parameters 
Shortcut: PA 
Parameters: A distribution type and parameters, see prior command 
Example: PriorAll Exp 10 
  PriorAll Beta 1 7 
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Command: PriorCats 
Purpose: Specify the number of categories to divide the prior into, default 100.  
Shortcut: PCat 
Parameters: An integer > 1,  
Example: PriorCats 200 
  PCat 50 
 
Command: RateDev 
Purpose: Sets the rate deviation parameter, effecting acceptance rate. The new version 

automatically finds a good acceptance rate. Setting it manually is an advanced 
option and should be avoided.  

Shortcut: RD 
Parameters: None to automatically estimate the parameter, an value to set all parameters to the 

same value, a parameter name and value to set a specific parameter to a value, only 
for continuous models.  

Example: RateDev 
  RateDev 12.5 
  RateDev alpha-1 0.3 
 
Command: Restrict 
Purpose: Restrict a parameter or parameters to another parameter of a fixed value.  
Shortcut: Res 
Parameters: A list of parameter to restrict, a parameter or fixed value to restrict to.  
Example: Restrict alpha1 beta1 

Restrict alpha1 beta1 alpha2 beta2 
Restrict beta1 beta2 1.5 

Command: RestrictAll 
Purpose: Restrict all parameter to a parameter or fixed value 
Shortcut: ResAll 
Parameters: A parameter or fixed value  
Example: RestrictAll alpha1 
  ResAll 0.75 
 
Command: RevJump 
Purpose: Set a reverse jump analysis  
Shortcut: RJ 
Parameters: A prior and prior parameter 
Example: RevJump exp 10 
  RevJump Gamma 4 20 
  RJ Beta 5.0 2.5 
 
Command: RevJumpHP 
Purpose: Set a reverse jump analysis with a hyper prior  
Shortcut: RJHP 
Parameters: A hyper prior 
Example: RevJumpHP exp 0 100 
  RevJumpHP gamma 0 100 0 50 
 
Command: Run 
Purpose: Run the analysis 
Shortcut: RU 
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Parameters: None 
Example: Run 

Command: Sample 
Purpose: Set the sample frequency 
Shortcut: SA 
Parameters: An integer > 0 
Example: Sample 1000 
  Sample 250 
 
Command: SaveModels 
Purpose: Save the models to a file 
Shortcut: SM 
Parameters: A file name to save the models to.  
Example: SaveModels ModelFile.bin 
  SM ModelFile.bin 
 
Command: SaveTrees 
Purpose: Save the sample of trees before analysis  
Shortcut: ST 
Parameters: A filename to save the trees to 
Example: SaveTrees STrees.trees 

Command: Seed 
Purpose: Set the random seed 
Shortcut: se 
Parameters: An integer, > 0, to seed the random number from 
Example: Seed 39362 

  Se 483 
 
Command: Stones 
Purpose: Initialise the stepping stone sampler 
Shortcut: st 
Parameters: The number of stones to use and the number of iterations to use each stone for 

The alpha and beta parameters which specify the distribution the stone are drawn 
from can also be supplied.  

Example: Stones 100 10000 
  Stone 100 25000 0.6 8.0 
 
Command: Symmetrical 
Purpose: Make restrictions to create a symmetrical matrix  
Shortcut: SYM 
Parameters: none 
Example: Symmetrical 
  SYM 

 
Command: TaxaInfo 
Purpose: Show taxa names and numbers 
Shortcut: TI 
Parameters: None 
Example: TaxaInfo 
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Command: TestCorrel 
Purpose: To set the correlation between traits to zero, used for model testing.  
Shortcut: TC 
Parameters: None 
Example: TestCorrel 
 
Command: UnRestrict 
Purpose: Remove a parameter restriction 
Shortcut: UNRes 
Parameters: A parameter to un restrict 
Example: UnRestrict q01 

 

Command: UnRestrictAll 
Purpose: Remove all restrictions 
Shortcut: UnResAll 
Parameters: none 
Example: none 

 

Command: VarRates 
Purpose: Use the variable rates model 
Shortcut: VR 
Parameters: None 
Example: VarRates 
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