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Disclaimer 
 Software development is a notoriously error prone activity. While efforts are made to make 

the programme as accurate as possible, due to the size and complexity of BayesTraits it will contain 

bugs, care must be taken when using the software. If you notice any unusual behaviour including 

crashes or inconsistent results please contact the authors with the data, trees and commands used.      



New features / models  

Version 4 
 

Automatically detects and models directional changes, as well as evolvability changes. See the Fabric 

model 

 

A global trend model to test if trait change shows a general pattern of increase or decrease along 

paths through the tree that differ in their total evolvability 

  

Variable Rates models and other Reverse Jump tree transformation methods can be used on 

samples of trees, incorporating uncertainty in topology and branch length estimates into the 

analysis.   

 

Threshold costs can be applied to Reverse Jump tree transformations 

 

Draw random values from prior distributions, which can be used to visualise priors  

  

Speed improvements when using distributions of data, for large trees this can improve performance 

by two orders of magnitude.  

 

Threaded version of the Geo model and non-threaded are consistent with each other for a given 

random seed.   



Version 3 
Version 3 of  BayesTraits includes a range of heterogeneous models, removing the assumption 

that the model of evolution is constant threw the tree, these can be particularly important for large 

or diverse trees.  

Automatically detect shifts in rates of evolution (Variable Rates model) for MultiState / discrete data, 

as well as continuous.  

Kappa, lambda, delta and rate scalars can be applied to nodes within a tree 

Allow patterns of evolution to vary within a tree for MultiState / discrete data 

Improved parallelism  

Integration of a fast / high precision likelihood calculation for multi-state and discrete models 

Reverse Jump MCMC (RJ-MCMC) methods to detect changes in evolutionary patterns (kappa, 

lambda, and delta) 

Improved Maximum Likelihood searching 

Geographical models  

Distributions of trait data instead of single values 

More control over priors  



Introduction 
BayesTraits is a computer package for performing analyses of trait evolution among groups 

of species for which a phylogeny or sample of phylogenies is available. It can be applied to the 

analysis of traits that adopt a finite number of discrete states, or to the analysis of continuously 

varying traits. The methods can be used to take into account uncertainty about the model of 

evolution and the underlying phylogeny. Evolutionary hypotheses can be tested including 

Finding rates of evolution 

Establishing correlations between traits 

Calculating ancestral state values 

Building regression models 

Predicting unknown values 

Testing for modes of evolution 

 Accelerated / decelerated rates of evolution through time 

Magnitude of phylogenetic signal 

Variable rate of evolution through time and within the tree  

Fabric model, directional changes and evolvability changes. 

Ornstein-Uhlenbeck processes 

If trait change is concentrated at speciation events 

Test for covarion evolution 

 Account for uncertainty in trait values 

 Interpolate unknown trait values  



Methods and Approach 
BayesTraits uses Markov chain Monte Carlo (MCMC) methods to derive posterior 

distributions and maximum likelihood (ML) methods to derive point estimates of, log-likelihoods, the 

parameters of statistical models, and the values of traits at ancestral nodes of phylogenies.  The user 

can select either MCMC or reversible-jump MCMC.  In the latter case the Markov chain searches the 

posterior distribution of different models of evolution as well as the posterior distributions of the 

parameters of these models (see below).   

BayesTraits can be used with a single phylogenetic tree in which case only uncertainty about 

model parameters is explored, or, it can be applied to suitable samples of trees such that models are 

estimated and hypotheses are tested taking phylogenetic uncertainty into account.   

BayesTraits is designed to be as flexible as possible, but users must treat this flexibility with 

care, as it allows models which may not have a valid interpretation, for example you can create 

complex models which cannot be estimated from the given data, such as estimating 100 parameters 

for a 30 taxa tree or build a regression model from unsuitable data.  

BayesTraits methods 
• MultiState is used to reconstruct how traits that adopt a finite number of discrete states 

evolve on phylogenetic trees.  It is useful for reconstructing ancestral states and for testing models 

of trait evolution. It can be applied to traits that adopt two or more discrete states (Pagel, Meade et 

al. 2004) 

• Discrete is used to analyse correlated evolution between pairs of discrete binary traits.  Most 

commonly the two binary states refer to the presence or absence of some feature, but could also 

include “low” and “high”, or any two distinct features. Its uses might include tests of correlation 

among behavioural, morphological, genetic or cultural characters  (Pagel 1994, Pagel and Meade 

2006) 

• Continuous is for the analysis of the evolution of continuously varying traits using a GLS 

framework. It can be used to model the evolution of a single trait, to study correlations among pairs 

of traits, or to study the regression of one trait on two or more other traits (Pagel 1999). 

• Continuous regression is used to build regression models and use these models to 

reconstruct unknown values (Organ, Shedlock et al. 2007). 

• Independent contrast methods (Felsenstein 1973, Freckleton 2012) provides a very fast 

alternative to the GLS methods. They are useful for analysing large trees, but some model 

parameters cannot be estimated. 

• Variable rates is used to detect variations in the rate of evolution threw the tree, accounting 

for changes in rate on a single lineage or for a group of taxa (Venditti, Meade et al. 2011). 

This manual is designed to show how to use the programs that implement these models.  

Detailed information about the methods can be found in the papers listed at the end (some are 

available as pdfs on our website). Syntax and a description of available commands in BayesTraits is 

listed below.  



Model Data 

MultiState Multistate  

Discrete: Independent Two binary traits 

Discrete: Dependent Two binary traits 

Continuous: Random Walk Continuous traits 

Continuous: Directional Continuous traits 

Continuous: Regression Two or more continuous traits 

Independent Contrasts Continuous traits 

Independent Contrasts: Correlation Two or more continuous traits 

Independent Contrasts: Regression Two or more continuous traits 

Discrete: Covarion Two binary traits 

Discrete: Heterogeneous Two binary traits 

Geographical  Two traits longitude and latitude 

Tree Format 
 BayesTraits requires trees to be in Nexus format, trees can include hard polytomies but must 

be correctly rooted and include branch lengths. Taxa names must not be included in the description 

of the tree but should be linked to a number in the translate section of the tree file, a number of 

example trees are included with the program.  

Data Format 
 Data is read from a plain text file (ASCII), with one line for each species or taxon in the tree.  

The names must be spelled exactly as in the trees and must not have any spaces within them but do 

not need to be in the same order. Following a species name, leave white space (tab or space) and 

enter the first column of data, repeat this for additional columns of data (see below).  Data for 

MultiState analysis should take values such as “0”, “1”, “2” or “A”, “B”, “C” etc. Data for discrete 

must be exactly two columns of binary data and must take the values “0” or “1”. Continuous data 

should be integers or floating points. If data are missing it should be represented using “-“, for a trait 

in MultiState or Discrete the remaining data for the taxa is used, if data are missing for Continuous 

models the taxa are removed from the tree. Example data files for MultiState, Discrete and 

Continuous data are included with the program.  

Example of MultiState data  

Taxon01 A A C 

Taxon02 B B C 

Taxon03 A B - 

Taxon04 C BC B 

….    

TaxonN C A B 

Taxon 3 has missing data for the third site. In Discrete and Multistate missing data are 

treated as if the trait could take any of the other states, with equal probability. Alternatively you can 



indicate uncertainty about a traits value. For example, the second trait for Taxon 4 is uncertain.  The 

code BC signifies that it can be in states B or C (with equal probability) but not in state A. 

Example of Discrete (binary) data  

Taxon01 0 0 

Taxon02 0 - 

Taxon03 1 0 

Taxon04 0 1 

….   

TaxonN 1 1 

 

Example of Continuous data  

Taxon01 10 9.0 

Taxon02 1.06 - 

Taxon03 5.3 2 

Taxon04 3 4 

….   

TaxonN 1 1.1 

Branch lengths 
 Model parameters are dependent on branch lengths, as branch lengths can come in differing 

units, years, millions of years, expected number of substitutions, it is recommended that the branch 

lengths are scaled to have a mean of 0.1 for MultiState and discrete models, this prevents the rates 

becoming small, hard to estimate or search for. The command “ScaleTrees” can be used to scale the 

branch lengths, if no parameters are supplied the branches are scaled to have a mean of 0.1, 

otherwise the branch lengths are scaled by the supplied factor.  

Running BayesTraits 
 BayesTraits is run from the command prompt (Windows) or terminal (OS X and Linux), it is 

not run by double clicking on it. The program, tree file and data file should be placed in the same 

directory / folder. Start the command prompt / terminal and change to the directory that the 

program, tree and data are in and type.  

 Windows 

BayesTraitsV4.exe TreeFile DataFile  

 Linux / OSX 

./BayesTraitsV4 TreeFile DataFile 

 Where TreeFile is the name of the tree file and DataFile is the name of the data file.  



Running BayesTraits with a command file 
 If you need to run an analysis multiple times or if it is complex it can be more convenient to 

place the commands into a command file, instead of typing them in each time. A command file is a 

plane ASCII text file, that contains the commands to run.  

An example command file is included with the program, “ArtiodactylMLIn.txt”. The file has 

three lines.  

 

 1 

 1 

Run 

 

The first line selects MultiState, the second is for ML analysis and the third is to run the 

program. To run BayesTraits using the Artiodacty tree, data and input file use the following 

command. The command and their order can be found by running the program normally and noting 

your inputs. 

 

Windows  

 
BayesTraitsV4.exe Artiodactyl.trees Artiodactyl.txt < ArtiodactylMLIn.txt 

 

 Linux / OS X 

 
./BayesTraitsV4 Artiodactyl.trees Artiodactyl.txt < ArtiodactylMLIn.txt 

Continuous-time Markov models of trait evolution for discrete traits 
MultiState and Discrete fit continuous-time Markov models to discrete character data.  This 

model allows the trait to change from the state it is in at any given moment to any other state over 

infinitesimally small intervals of time.  The rate parameters of the model estimate these transition 

rates (see (Pagel 1994) for further discussion).  The model traverses the tree estimating transition 

rates and the likelihood associated with different states at each node. 

The table below shows an example of the model of evolution for a trait that can adopt three 

states, 0, 1, and 2.  The qij are the transition rates among the three states, and these are what the 

method estimates on the tree, based on the distribution of states among the species.  If these rates 

differ statistically from zero, this indicates that they are a significant component of the model.  The 

main diagonal elements are constrained to be equal to minus the sum of the other elements in the 

row. 

 

 

 

 



Example of the model of evolution for a trait that adopts three states 

State 0 1 2 

0 -- q01 q02 

1 q01 -- q12 

2 q20 q21 -- 

 

For a trait that adopts four states, the matrix would have twelve entries, for a binary trait 

the matrix would have just two. 

Discrete tests for correlated evolution in two binary traits by comparing the fit (log-

likelihood) of two of these continuous-time Markov models.  One of these is a model in which the 

two traits evolve independently on the tree.  Each trait is described by a 22 matrix in the same 

format as the one above, but in which the trait adopts just two states, “0” and “1”.  This creates two 

rate coefficients per trait. 

The other model, allows the traits to evolve in a correlated fashion such that the rate of 

change in one trait depends upon the background state of the other.  The dependent model can 

adopt four states, one for each combination of the two binary traits (0,0; 0,1; 1,0; 1,1). It is 

represented in the program as shown below and the transition rates describe all possible changes in 

one state holding the other constant.  The main diagonal elements are estimated from the other 

values in their row as before.  The other diagonal elements are set to zero as the model does not 

allow ‘dual’ transitions to occur, the logic being that these are instantaneous transition rates and the 

probability of two traits changing at exactly the same instant of time is negligible.  Dual transitions 

are allowed over longer periods of time, however.  See Pagel, 1994 for further discussion of this 

model. 

 

State 0,0 0,1 1,0 1,1 

0,0 -- q12 q13 -- 

0,1 q21 -- -- q24 

1,0 q31 -- -- q34 

1,1 -- q42 q43 -- 

 

The values of the transition rate parameters will depend upon the units of measurement 

used to estimate the branch lengths in the phylogeny.  If the branch lengths are increased by a factor 

‘c’ the transition rates will be decreased by the same factor ‘c’.  This has implications for modelling 

the rate parameters in Markov chains (see Branch lengths). 



 BayesTraits implements the covarion model for trait evolution (Tuffley and Steel 1998).  This 

is a variant of the continuous-time Markov model that allows for traits to vary their rate of evolution 

within and between branches. It is an elegant model that deserves more attention, although users 

may find it of limited value with small trees. 

The Generalised Least Squares model for continuously varying traits 
Phylogenetically structured continuously varying data is analysed using a generalised least 

squares (GLS) approach that assumes a Brownian motion model of evolution (see (Pagel 1997, Pagel 

1999)). In the GLS model, non-independence among the species is accounted for by reference to a 

matrix of the expected covariances among species.  This matrix is derived from the phylogenetic 

tree.  The model estimates the variance of evolutionary change (the Brownian motion parameter), 

sometimes called the ‘rate’ of change, and the ancestral state of traits at the root of the tree (alpha).  

It can also estimate the covariance of changes between pairs of traits, and this is how it tests for 

correlation. 

The GLS approach as implemented in Continuous makes it possible to transform and scale 

the phylogeny to test the adequacy of the underlying model of evolution, to assess whether 

phylogenetic correction of the data is required, and to test hypotheses about trait evolution itself – 

for example, is trait evolution punctuational or gradual, is there evidence for adaptive radiation, is 

the rate of evolution constant.   

 

Generalised Least Squares (GLS) and independent contrasts 

The generalised least squares (GLS) method requires a number of computationally intensive 

calculations, including matrix inversions, Kronecker products and matrix multiplications. The time it 

takes to calculate a solution for GLS methods increases rapidly with the size of the tree, making 

analysis on large trees computationally intensive. Independent contrast (Felsenstein 1973, 

Freckleton 2012) uses a restricted likelihood method, these methods are computationally efficient at 

the expense of not estimating some parameters, especially when using MCMC, see individual model 

description for information about which parameters are estimated. If speed is an issue, for data sets 

with hundreds or thousands of taxa, independent contrast should be favoured.  

Model Testing: Likelihood ratios and Bayes Factors 
BayesTraits does not test hypotheses for you but prints out the information needed to make 

hypothesis tests. These will be discussed in more detail in conjunction with the examples below, but 

here we outline the two kinds of tests most often used. 

The likelihood ratio (LR) test is often used to compare two maximum likelihoods derived 

from nested models (models that can be expressed such that one is a special or general case of the 

other). The likelihood ratio statistic is calculated as  

LR= 2[log-likelihood(better fitting model) – log-likelihood(worse fitting model)] 



The likelihood ratio statistic is asymptotically distributed as a 2 with degrees of freedom 

equal to the difference in the number of parameters between the two models. However, in some 

circumstances (Pagel 1994, Pagel 1997) the test may follow a 2 with fewer degrees of freedom. 

Variants of the LR test include the Akaike Information Criterion and the Bayesian 

Information Criterion. We do not describe these tests here.  They are discussed in many works on 

phylogenetic inference (see for example, (Felsenstein 2004)). 

The LR, Akaike and Bayesian Information Criterion tests presume that the likelihood is at or 

near its maximum likelihood value. In a MCMC framework tests of likelihood often rely on Bayes 

Factors (BF). The logic is similar to the likelihood ratio test, except here we compare the marginal 

likelihoods of two models rather than their maximum likelihoods.  The marginal likelihood of a 

model is the integral of the model likelihoods over all values of the models parameters and over 

possible trees, weighted by their priors. In practice this marginal likelihood is difficult to calculate 

and must be estimated.  

Stepping stone sampler 
The stepping stone sampler (Xie, Lewis et al. 2011) estimates the marginal likelihood by 

placing a number of ‘stones’ which link the posterior with the prior, the stones are successively 

heated, forcing the chain from the posterior towards the prior, this provides an effective estimate of 

the marginal likelihood. The “stones” command, is used to set the sampler, the command takes the 

number of stones and the number of iterations to run the chain on each stone. An example of 

setting the stones sampler is below, the command sets the sampler to use 100 stones and run each 

stone for 10,000 iterations.  

Stones 100 10000 

 

The sampler runs after the chain has finished and produces a file with the extension 

“Stones.txt”, the log marginal likelihood is recorded on the last line of the file. Other information 

such as temperature, the stones likelihood and marginal likelihood of each stone is also included but 

this is mainly for diagnostic purposes.  

The marginal likelihood from the stepping stone sampler are expressed on a natural log 

scale, these values can be converted into Log Bayes Factors using the formula below. Raffety in 

(Gilks, Richardson et al. 1996) Pages 163–188, provides an interpretation of these values.  

Log Bayes Factors = 2(log marginal likelihood complex model – log marginal likelihood simple model) 

Log Bayes Factors Interpretation 

<2 Weak evidence 

>2 Positive evidence 

5-10 Strong evidence 

>10 Very strong evidence 

The stepping stone estimate of the marginal likelihood is sensitive to a number of factors, 

including, priors, length of the chain, number of estimated parameters and run to run variation. Care 

should be taken to ensure estimates are accurate and stable, multiple independent run should be 

used, the accuracy of the sampler can be increased by using more stones and/or sampling each 



stone for longer.  These options should be investigated if there is large run to run variation. Model 

testing is a controversial topic with Bayesian analysis, and other options such as BIC, AIK, DIC may be 

considered. 

The stepping stone sampler places the stones connecting the posterior distribution with the 

prior according to a beta distribution, the default uses an α = 0.4, β = 1.0, these parameters seem to 

work well but other beta parameters can be specified using the stones command. The stones 

command can take the number of stones, the number of iterations per stone, α and β. The 

command below uses 250 stones each for 5000 iterations drawn from a beta distribution with an α 

of 2.2 and β of 5.7 

Stones 250 5000 2.2 5.7  

Harmonic mean 
 Previous versions of BayesTraits produced a running harmonic mean to estimate the 

marginal likelihood, this has been removed in version 3, as the stepping stone sampler produces a 

more stable estimate and is computationally more efficient. For backwards compatibility a web site 

that calculates the log harmonic mean from a sample of likelihoods has been created.  

www.evolution.reading.ac.uk/HMeanCalc/ 

 The site take a list of log likelihoods and calculates the log harmonic mean from them. An 

example of 10,000 log likelihoods can be found in the file “HarmonicMeanLh.txt”, if the likelihoods 

are passed into the text box on the web site, the Log Harmonic mean should be -141.448 

Priors 
When using the MCMC analysis method, the prior distributions of the parameters of the 

model of evolution must be chosen. Uniform or uninformative priors should be used if possible as 

these assume all values of the parameters are equally likely a priori and are therefore easily justified.  

Uniform priors can be used when the signal in the data is strong.  But in a comparative study there 

will typically only be one or a few data points (unlike the many hundreds or thousands in a typical 

gene-sequence alignment) so a stronger prior than a uniform may be required.   

Priors are the soft underbelly of Bayesian analyses.  The guiding principle is that if the choice 

of prior is critical for a result, you must have a good reason for choosing that prior.  It is often useful 

to run maximum likelihood analyses on your trees to get a sense of the average values of the 

parameters. One option if a uniform with a wide interval does not constrain the parameters is to use 

a uniform prior with a narrower range of values, and this might be justified either on biological 

grounds or perhaps on the ML results.  The ML results will not define the range of the prior but can 

give an indication of its midpoint. 

NOTE:  A rule of thumb when choosing a constrained or informed (non-uniform) prior is that if the 

posterior distribution of parameter values seems truncated at either the upper or lower end of the 

constrained range, then the limits on the prior must be changed. 

The program allows uniform, exponential, gamma, Chi-squared, log normal and normal 

distributed priors, specified as “uniform”, “exp”, “gamma”, “chi”, “lognormal”, “normal” and 



“sgamma”.  The uniform prior requires the user to specify a range, the exponential distribution 

always has its mode at zero and then slopes down, whereas the gamma can take a variety of uni-

modal shapes or even mimic the exponential.  The exponential prior is useful when the general 

feeling is that smaller values of parameters are more likely than larger ones. If the parameters are 

thought to take an intermediate value, a gamma prior with an intermediate mean can be used. The 

scaled gamma (Venditti, Meade et al. 2011), sgamma, is useful for scalars.  

Priors are set using the prior command, the Prior command takes a parameter to set the 

prior for, a distribution and the parameters of the distribution. For example,  

Prior q01 exp 10 

is used to set an exponential prior with a mean of 10 for the rate parameter q01 

Prior delta uniform 0 100  

sets the prior on delta to a uniform 0 – 100 

In many cases you will want to use the same prior on all rate parameters, the PriorAll 

command can be used to do this. It is identical to the prior command but does not take a parameter. 

For example, 

PriorAll exp 10 

sets all rate priors to an exponential with a mean of 10 

Because it can be difficult to arrive at suitable values for the parameters of the prior 

distributions, BayesTraits allows the use of a hyper-prior.  A hyper-prior is simply a distribution – 

usually a uniform -- from which are drawn values to seed the values of the exponential or gamma 

priors.  We recommend using hyper-priors as they provide an elegant way to reduce some of the 

uncertainty and arbitrariness of choosing priors in MCMC studies. For an example of selecting priors 

and using a hyper-prior see (Pagel, Meade et al. 2004) 

When using the hyper-prior approach you specify the range of values for the uniform 

distribution that is used to seed the prior distribution.  Thus, for example  

HyperPriorAll exp 0 10 

seeds the mean of the exponential prior from a uniform on the interval 0 to 10.  

HyperPriorAll gamma 0 10 0 10 

seeds the mean and variance of the gamma prior from uniform hyper priors both on the 

interval 0 to 10. For a full list of commands see Command List.  

 

Often it is beneficial to visualise the prior distribution, the TestPrior command (see 

TestPrior) can be used to draw a number of random values from the specified prior, a frequency 

histogram can be plotted (in R, JMP, Excel ect) to visualise the prior that is being used.  



Burn-in and sampling in MCMC analysis  
The burn-in period of a MCMC run is the early part of the run while the chain is reaching 

convergence. It is impossible to give hard and fast rules for how many iterations to give to burn-in.  

We often find that a minimum of 10,000 and seldom more than 1,000,000 is sufficient for simple 

models. With more complex models (Variable rates model, ect) or larger trees often requiring longer 

burn-in periods. The length of burn-in is set with the burnin command. During burn-in nothing is 

printed.  

Because successive iterations of most Markov chains are autocorrelated, there is frequently 

nothing to be gained from printing out each line of output.  Instead the chain is sampled or thinned 

to ensure that successive output values are roughly independent.  This is the job of the sample 

command.  It instructs the program only to print out every nth sample of the chain.  Choose this 

value such that the autocorrelation among successive points is low (this can be checked in most 

statistics programs or Excel).  For many comparative datasets, choosing every 1000th or so iterations 

is more than adequate to achieve a low autocorrelation. 

The chain is run for 1,010,000 iterations by default, this can be changed with the iterations 

command, which takes the number of iterations to run for or -1 for an infinite chain, which can be 

stopped by holding Ctrl and pressing C.  

The parameter proposal mechanism and mixing in MCMC analysis 

Mixing 
Mixing, the proportion of proposed changes to a chain that is accepted, is key to a successful 

MCMC analysis, MCMC proceeds by proposing changes to parameters. If proposed changes to a 

parameter are too large the likelihood will change dramatically, and at convergence many of the 

proposed changes will have a poor likelihood. This will cause the chain to have a low acceptance rate 

and the chain will mix poorly or even become stuck. The other side of the coin is, if small changes are 

proposed the likelihood does not change much, leading to a high acceptance rate, but the chain 

typically does not explore the parameter space effectively. An ideal acceptance rate is often 

between 20-40% when the chain is at convergence.  

 

Parameter values can vary widely between data sets and trees, as the units data and branch 

lengths are in can vary orders of magnitude. This makes it very hard to find a universal proposal 

mechanism. An automatic tuning method is used in BayesTraits to adapt the proposal mechanism to 

achieve an acceptance rate of 35%.  

Monitoring Acceptance Rates 
BayesTraits produces a schedule file, which is used to monitor how the chain is mixing, the 

file contains the schedule, the percentage of operators tried, followed by a header. The header 

shows the number of times an operator was tried and the percentage of times it was accepted, if 

auto tune is used the rate deviation values, acceptance rate for that parameter, the average 

acceptance for that iteration and the running mean acceptance rate is recorded. The schedule file 

should be reviewed to make sure the chain is mixing correctly.  

 



 

Over parameterisation 
 

Due to the statistical nature of the methods it is possible to create over parameterised 

models, were too many parameters are estimated from not enough data. Indications of over 

parameterisation include, poorly estimated parameters, parameters trading off against each other, 

suboptimal likelihoods, and poor convergence / parameter optimisation. Model complexity can be 

reduced by combining parameters with the restrict command, or by using reverse jump MCMC and 

ensuring the ratio of parameters to data is not high.  

Parameter restrictions 
For MultiState and discrete models the number of parameters increases roughly as a square 

of the number of states, it is important to have sufficient data to estimate them. MultiState and 

discrete models allow parameters to be combined, reducing the number of free parameters. The 

restrict command (res) is used to restrict parameters, the command takes two or more parameter 

names, restricting all supplied parameters to the first, it can also be used to restrict parameters to a 

constant.  

 

The following command restricts alpha2 to alpha1  

Res alpha1 alpha2 

 

To restrict all parameters, in an independent model, to alpha1 use 

Res alpha1 alpha2 beta1 beta2 

Or 

ResAll alpha1 

 

Parameters can also be restricted to constants, including zero, in the same way 

Res alpha1 1.5 

Or 

Res alpha1 alpha2 1.5 

 

Model testing (see Model Testing: Likelihood ratios and Bayes Factors) can be used to test if 

a parameter is statistically justified, when rates are restricted the number of free parameters is 

reduced.   

Reverse Jump MCMC 
 For a complex model the number of possible restrictions is large, and may be impossible to 

test. A reverse jump MCMC method (Green 1995) was developed to integrate results over model 

parameter and model restrictions, for a detailed description see (Pagel and Meade 2006).  

 The RevJump (RJ) command is used to select reverse jump MCMC, the command takes a 

prior and prior parameters. For example, the command below uses reverse jump with an 



exponential prior with a mean of 10. The second command uses reverse jump with a hyper 

exponential prior where the mean of the exponential is drawn from a uniform 0 - 100 

  

RevJump exp 10  

Or  

 RJHP exp 0 100 

 

For the general case 

 RevJump Prior Name Prior parameters 

Or 

 RJHP Prior Name Prior parameters range 

 Where the prior name is “exp”, “gamma”, “uniform” 

 Parameter restrictions can be used in combination with Reverse Jump, if you would like to 

set parameters to specific values or use a specific set of restrictions.  

MultiState ML example  
 

Start the program using the “Artiodactyl.trees” tree file and the “Artiodactyl.txt” file. The 

following screen should be presented to you 

 

Please select the model of evolution to use. 

1)      MultiState 

 

Select 1 for the MultiState model 
 

Please select the analysis method to use. 

1)      Maximum Likelihood. 

2)      MCMC 

 

Select 1 for Maximum Likelihood analysis.  

 

The default options will be printed, displaying basic information. This should always be 

checked to ensure it is what you expect.  

 

 Type 

 

run   

  

to start the analysis  

The options for the run will be printed followed by a header row.  

 

 



 

 

 

Header  Output 

Tree No The tree number, 1-500 for this data 

Lh Maximum likelihood value for the tree 

qDG The transition rate from D to G 

qGD The transition rate from G to D 

Root P(D) The probability the root is in state D 

Root P(G) The probability the root is in state G 

For each tree in the sample a line of output will be printed. Once all trees have been 

analysed the program will terminate.  

MultiState MCMC example  
Start the program using the “Artiodactyl.trees” tree and “Artiodactyl.txt” data file, the 

commands below are used to select MultiState (1) and MCMC (2). The default options will be 

printed. The third line sets all priors to an exponential with a mean of 10, and the fourth line starts 

the chain with the run command.  

 

1 

2 

PriorAll exp 10 

Run 

 

A header will be printed  

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Tree No Current tree number 

qDG Transition rate from D to G 

qGD Transition rate from G to D 

Root P(D) Probability the root is in state D 

Root P(G) Probability the root is in state G 

 

Followed by some output. 

 

 

 

 

 

 

 



 

 

Iteration Lh Tree No qDG qGD Root 

P(D) 

Root 

P(G) 

11000 -7.93307 187 3.702561 2.5446 0.351023 0.648977 

12000 -8.98846 495 3.120973 4.914959 0.475628 0.524372 

13000 -8.37416 99 3.799383 4.489798 0.417393 0.582607 

14000 -10.2806 95 17.07613 27.54498 0.499972 0.500028 

15000 -10.7122 95 6.945588 5.865219 0.48436 0.51564 

… … … … … … … 

1006000 -8.94481 400 8.97661 8.407563 0.473517 0.526483 

1007000 -8.53244 147 0.33644 1.477702 0.012116 0.987884 

1008000 -8.03562 338 2.454093 3.334973 0.270869 0.729131 

1009000 -8.41139 107 2.217407 4.183507 0.365974 0.634026 

1010000 -9.72812 61 7.50541 9.538785 0.484114 0.515886 

 

 The output will be saved in a log file, ending “.Log.txt”. Output from the chain is tab 

separated and is designed to be used in programs such as Excel and JMP. Run to run output will vary 

and is dependent on the random seed used. 

Parameter restriction example  
 The previous example assumed that the transition rates from state D to G (qDG) and from 

state G to D (qGD) were different and both were estimated. The parameter estimates from a longer 

run are plotted below, the two distributions show considerable overlap.   

 

To test if the rate D changes to G (qDG) is significantly different from the rate G changes to D 

(qGD), re-run the analysis restricting qGD to take the same value as qDG. First calculate the marginal 

likelihood of a model which estimates qGD and qDG separately using the commands below. The first 

two commands select MultiState (1) and MCMC (2), the third commands uses an exponential prior 

with a mean of 10 for both rates, the fourth command uses the stepping stone sampler with 100 

stones and 1000 iterations per stone to estimate the marginal likelihood, the fifth command starts 

the analysis.  

 

 

0 5 10 15 20 25 30 35 40 45 50 55 60

qDG

0 5 10 15 20 25 30 35 40 45 50 55 60

qGD



 

1 

2 

PriorAll exp 10 

Stones 100 1000 

Run 

 Once the analysis has finished a file containing the marginal likelihood will be created, 

Artiodactyl.txt.Stones.txt, the last line will contain the marginal likelihood, and should be similar to 

the line below. There will be run to run variation so the numbers will not be identical, but should be 

roughly -8.7 

Log marginal likelihood: -8.774642 

 Rerun the analysis restricting qDG to qGD using the commands below.  

1 

2 

PriorAll exp 10 

Stones 100 1000 

Restrict qDG qGD 

Run 

 The options are the same, except the 5th command sets qGD equal to qDG, the output 

should be very similar but the rate parameters (qDG and qGD) will take the same value each 

iteration. Once the run has finished, the stepping stone file’s last line should be similar to the one 

below.  

Log marginal likelihood: -8.296317 

 Bayes Factors can be used to test if qDG is significantly different from qGD, in this case the 

model where qDG = qGD is the simple model as it has one fewer parameters, the model where qDG 

≠ qGD is the complex one.  

Log Bayes Factor = 2(log marginal likelihood complex model – log marginal likelihood simple model) 

 Log BF =  2(-8.774642- -8.296317)   

 Log BF =  -0.95665 

 

The log BF is less than two so the simpler model should be favoured (see (Gilks, Richardson 

et al. 1996) or the table in Stepping stone sampler) 



Values of the marginal likelihood calculated from the stepping stone sampler will vary 

between runs, depending on the random seed, values are only for illustrative purposes. These values 

are only used to demonstrate basic model testing.  

  The same restrict command can be used in Maximum Likelihood analysis.  

1 

1 

PriorAll exp 10 

Restrict qDG qGD 

Run 

Tags 
 Tags are used to identify nodes within a sample of trees, they can be used to reconstruct 

ancestral states, fix nodes to specific values (fossilise), test if a node has a different rate or mode of 

evolution and fit different evolutionary models to subsets of the tree. The AddTag (AT shortcut) is 

used to create a tag, it takes a unique name to identify the tag and a list of taxa names that define 

the node.  

 For example, the command below creates a tag called TestTag on a node defined by Sheep 

Goat, Cow and Buffalo.  

  AddTag TestTag Sheep Goat Cow Buffalo Pronghorn 

Ancestral state reconstruction MultiState / Discrete  
 

Note: The syntax for reconstructing a node has changed since version 2.0. Tags are now used to 

identify nodes within a sample of trees.  

 The AddMRCA and AddNode commands are used to reconstruct ancestral states in 

MultiState and discrete models. The syntax for the two commands is similar.  

 

The commands take a name to identify the reconstructed node in the output, and the name 

of a tag (see Tags) that defines the node. BayesTrees 

(http://www.evolution.reading.ac.uk/BayesTrees.html) is a graphical tree viewer which can be used 

to generate the commands by clicking on the appropriate node.  

 

Start BayesTraits with the Artiodactyl tree and data file (Artiodactyl.trees, Artiodactyl.txt), 

use the commands below to reconstruct a node.  

 

 

 

 



1 

2 

AddTag TRecNode Porpoise Dolphin FKWhale Whale 

AddNode RecNode TRecNode 

Run 

 

 The first two commands select the MultiState model and MCMC analysis, the third 

command creates a tag called TRecNode defined by four taxa Porpoise, Dolphin, FKWhale and 

Whale. The AddNode command is used to reconstruct the tag, it takes a name (RecNode in this 

instance), so the node can be identified in the output and the name of the tag to reconstruct.  

 

Two new columns will be added to the output “RecNode P(D)” and “RecNode P(G)”, these 

represent the probability of reconstructing a D or a G at RecNode.   

 

BayesTraits uses a sample of trees and some nodes may not be present in all trees, the node 

defined by Sheep, Goat, Cow, Buffalo and Pronghorn is only present in 58% of the trees. The 

posterior probability of node reconstruction will not be present in some trees, some samples of the 

chain will record the ancestral sate as "--" because the node is not present in those trees.  

  

The MRCA command reconstructs the Most Recent Common Ancestor, while a MRCA will be 

present in every tree it may not be the same node (see (Pagel, Meade et al. 2004) for more details). 

Rerun the analysis using MRCA.  

 

 
1 

2 

PriorAll exp 10 

Res qDG qGD 

AddTag TVarNode Sheep Goat Cow Buffalo Pronghorn 

AddNode VarNode TVarNode 

Run 

 

 Any number of nodes can be reconstructed in a single analysis without affecting each other.  

 



Fixing node values / fossilising  
 Internal nodes can be set to take a fixed value, if external information is available or to test if 

the value of one state is significant. The fossil command takes a name, so the node can be identified 

in the output, a tag that defines the node and the state or states to fossilise the node in. Fossilised 

nodes are found using the most recent common ancestor method.  

 

The command below fossilises a node defined by sheep, goats, cows, buffalo and pronghorn 

to state D.  

 

1 

2 

AddTag FNode Sheep Goat Cow Buffalo Pronghorn 

Fossil Node01 FNode D 

Run 

  

 Be aware that fossilising nodes will influence the models, by forcing a node to take a specific 

value the model parameters will be affected. The fossil command can be used to fossilise in multiple 

states, if the data had three states, A, B and C the fossil command   

 
Fossil Name Tag AC 

 

 Fossilises the node in states A and C but not B.  

 

 Nodes can be fossilised for continuous models (not currently independent contrast) in the 

same way.  

 

4 

2 

AddTag Tag-01 Dorcopsulus_macleayi Dorcopsulus_vanheurni 

Fossil Node01 Tag-01 90.95 

Run 

 

 Fossilising states for discrete models requires a number instead of a state, as there are more 

combinations of fossil sates. The table below shows the numbers and their corresponding states. X 

denotes the likelihood is left unchanged, - sets the likelihood to zero.  

 

 

 

 

 



Number 0,0 0,1 1,0 1,1 

0 X - - - 

1 - X - - 

2 - - X - 

3 - - - X 

     

10 X X - - 

11 X - X - 

12 X - - X 

13 - X X - 

14 - X - X 

15 - - X X 

     

20 X X X - 

21 X X - X 

22 X - X X 

23 - X X X 

Discrete  
 Discrete is used to test if two binary traits are correlated, significance is established by 

comparing the likelihoods of two models, one which assumes the traits evolve independently, with 

one which assumes the traits evolution is correlated. The examples focus on MCMC but maximum 

likelihood can also be used. The examples use a sample of 500 primate trees (“Primates.trees”) and 

a data set of two binary traits, estrus advertisement and multi-male mating (“Primates.txt”). Two 

binary traits have 4 possible states, written as “0,0”, “0,1”, “1,0” and “1,1”.  

Discrete independent 
  The independent model assumes the two traits evolve independently, e.g. the transition 

from 0 → 1 in the first trait is independent of the state of the second trait. The independent model 

has 4 rate parameters, alpha1, beta1, alpah2 and beta2.  

 

 

 

 

 

 

 

 

Parameter Symbol Trait Transitions 

alpha1 1 1 0 → 1 

beta1 1 1 1 → 0 

alpha2 2 2 0 → 1 

beta2 2 2 1 → 0 



 0,0 0,1 1,0 1,1 

0,0 - 2 1 0 

0,1 2 - 0 1 

1,0 1 0 - 2 

1,1 0 1 2 - 

  

Start BayesTraits with the tree file “Primates.trees” and the data file “Primates.txt”. Using 

the commands below to select the independent model (2) and MCMC analysis (2). Set all the priors 

to an exponential with a mean of 10 and use the stepping stone sampler with 100 stones and 1000 

iterations per stone to estimate the marginal likelihood, the run command is used to start the 

analysis. The commands are listed below. The mean for the prior was found by analysing the tree 

using Maximum Likelihood and studying the resulting parameter rate estimates.  

 

2 

2 

PriorAll exp 10 

Stones 100 1000 

Run 

 

 The output will be similar to the MultiState analysis, the header will contain.  

 

 

 

 

 

 

 

The stepping stone sampler will produce a file “Primates.txt.Stones.txt”, the marginal 

likelihood is recorded in the last line,  

Log marginal likelihood: -46.674444 

The marginal likelihood will show run to run variation but it should be roughly -46.67.  

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Tree No Current tree number 

alpha1 The alpha1 transition rate 

beta1 The beta1 transition rate 

alpha2 The alpha2 transition rate 

beta2 The beta2 transition rate 

Root – P(0,0) Probability the root is in state 0,0 

Root – P(0,1) Probability the root is in state 0,1 

Root – P(1,0) Probability the root is in state 1,0 

Root – P(1,1) Probability the root is in state 1,1 



Discrete dependent 
 The dependent model assumes that the traits are correlated and the rate of change in one 

trait is dependent on the state of the other. The dependent model has 8 parameters, q12, q13, q21, 

q24, q31, q34, q42 and q43. Double transitions from state 0,0 to 1,1 or from 0,1 to 1,0 are set to 

zero.  

Parameter Dependent on Trait Transitions 

q12 Trait 1 = 0 2 0 → 1 

q13 Trait 2 = 0 1 0 → 1 

q21 Trait 1 = 0 2 1 → 0 

q24 Trait 2 = 1 1 0 → 1 

q31 Trait 2 = 0 1 1 → 0 

q34 Trait 1 = 1 2 0 → 1 

q42 Trait 2 = 1 1 1 → 0 

q43 Trait 1 = 1 2 1 → 0 

 

 

 

 0,0 0,1 1,0 1,1 

0,0 - q1,2 q1,3 0 

0,1 q2,1 - 0 q2,4 

1,0 q3,1 0 - q3,4 

1,1 0 q4,2 q4,3 - 

 

 

Start BayesTraits with the tree file “Primates.trees” and the data file “Primates.txt”, select 

the dependent model (3) and MCMC analysis (2). Set all the priors to an exponential with a mean of 

10 and use the stepping stone sampler with 100 stones and 1000 iterations per stone to estimate 

the marginal likelihood, the final command starts the analysis.  

3 

2 

PriorAll exp 10 

Stones 100 1000 

Run  

The output will be very similar to the independent model except that the dependent 

parameters are estimated. The marginal likelihood can be found in “Primates.txt.Stones.txt” and 

should be roughly -41.62. To test if the traits are correlated calculate a log Bayes Factor (see Model 

Testing: Likelihood ratios and Bayes Factors) between the dependent and independent models, in 



this case the dependent model is the complex one as it has more parameters. The calculations for 

Log Bayes factors is given below.  

Log BF = 2(log marginal likelihood complex model – log marginal likelihood simple model) 

Log BF =  2(-41.62- -46.67)   

 Log BF =  10.1 

  

 The Log BF of 10.1 suggests there is evidence for correlated evolution. Marginal likelihoods 

vary between runs and it is important to get a stable estimate by using multiple independent runs.  

Reverse Jump MCMC and model reduction 
 Given the size of the data and complexity of the models not all parameters may be 

statistically distinguishable. The previous parameter restriction example demonstrated how a model 

could be simplified by setting parameters equal to each other and how to test if restrictions were 

significant. There are 51 possible restrictions for the independent model and over 21,000 for the 

dependent model, which would take a long time to test. Reverse jump MCMC (RJ-MCMC) offers an 

alternative by integrating results over the model space, weighting naturally by their probabilities, 

allowing the users to select viable models and parameters, see (Pagel and Meade 2006) for more 

information.  

 The reverse jump command takes a prior as a parameter, one prior must be applied to all 

parameters, the command below uses an RJ MCMC model with an exponential prior with a mean of 

10 

 RevJump exp 10 

 RJ MCMC can also be used with a hyper-prior, (RJHP command).  

 RevJumpHP exp 0 100 

 Run the primates data and tree, with the dependent model and MCMC analysis, using the 

commands below 

3 

2 

RevJump exp 10 

Stones 100 1000 

Run 

  

 

 

 

 

 



 The output will contain 4 new columns.  

 

Header  Output 

No Of Parameters Number of parameters  

No Of Zero Number of parameters set to zero 

Model string A model string showing parameter restrictions 

Dep / InDep A flag showing if the model is dependent (D) 

or independent (I) 

   

 Model strings are used to characterise the models restrictions, the string start with ' and is 

followed by numbers indicating which parameters are in which groups or a Z if the parameters have 

been restricted to zero. For example the model string for a dependent model will have 8 

components one for each parameter, the model string “'1 Z 0 0 0 1 1 Z”, has two parameters and 

two rates set to zero. The first group consists of the 1st, 6th and 7th parameters (q12, q34 and q42), 

the second group is formed of the 3rd, 4th and 5th parameters (q21, q24 and q31), and the 2nd and 8th 

parameter is set to zero. This can be checked against the parameter estimates.  

 

 To test if a data set is correlated compare the marginal likelihood of an independent model 

using RJ MCMC and a dependent model using RJ MCMC.   

Covarion model  
 BayesTraits implements a basic on / off covarion model as described by (Tuffley and Steel 

1998) for MultiState and Discrete models, the model requires one additional parameter, the 

switching rate between the on / off states. The model allows the rate of evolution to vary through 

the tree. The “CV” command is used to activate the covarion model, two additional columns will be 

included in the output, “Covar On to Off” and “Covar Off to On”. The switching rate between the on 

and off states will be the same.  

Below is an example of how to fit a covarion model, using a large bird phylogeny (Jetz, 

Thomas et al. 2012) (http://birdtree.org/) and territory data taken from (Tobias, Sheard et al. 2016), 

it is used purely as an example and not to make a biological point. First calculate the likelihood and 

parameters using a homogenous model. Start BayesTraits with the tree “Bird.trees” and the data file 

“BirdTerritory.txt” 

 

1 

2 

ScaleTrees 0.001 

Stones 100 1000 

Run 



The commands select MultiState (1), MCMC (2), the command “ScaleTrees 0.001” is used to 

rescale the branch lengths to prevent the rates from becoming very small and the stones command 

is used to estimate the marginal likelihood using 100 stones and 1000 iterations per stone, the final 

command starts the analysis. This should produce a marginal likelihood of roughly -1942 

 Then run the data with a covarion model, the commands are the same except the covarion 

command turns on the model.  

1 

2 

Covarion 

ScaleTrees 0.001 

Stones 100 1000 

Run 

This should produce a marginal likelihood of roughly -1781, giving a Bayes Factor of over 

300, suggesting it is highly significant.   

Discrete: Covarion 
 The discrete covarion model removes the assumption that a trait is either correlated or not 

threw out the tree. It simultaneously fits both an independent and dependent model and uses a 

covarion method to switch between them. The model requires 14 parameters, 4 for the 

independent model, 8 for the dependent model and 2 that switch between the dependent and 

independent models. As this model has a large number of parameters the use of reverse jump is 

recommended, in combination with a large tree. If the discrete covarion model is significant this is 

not necessarily evidence for correlated evolution, the dependent model may be acting as a second 

independent model identifying changes in rates or patterns of evolution, this can be tested for by 

comparing models that restrict the dependent parameters to independent ones. The discrete 

covarion model supports RJ MCMC, to reduce the large number of parameters required. 

 

 

 

 

 

 

 

 



 

 Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Tree No Current tree number 

alpha1 The independent alpha1 transition rate 

beta1 The independent beta1 transition rate 

alpha2 The independent alpha2 transition rate 

beta2 The independent beta2 transition rate 

q12 The dependent q12 transition rate 

q13 The dependent q13 transition rate 

q21 The dependent q21 transition rate 

q24 The dependent q24 transition rate 

q31 The dependent q31 transition rate 

q34 The dependent q34 transition rate 

q42 The dependent q42 transition rate 

q43 The dependent q43 transition rate 

qDI The switching rate between the dependent and independent models 

qID The switching rate between the independent and dependent models 

Root - I P(0,0) Probability the root is in independent state 0,0 

Root - I P(0,1) Probability the root is in independent state 0,1 

Root - I P(1,0) Probability the root is in independent state 1,0 

Root - I P(1,1) Probability the root is in independent state 1,1 

Root - D P(0,0) Probability the root is in dependent state 0,0 

Root - D P(0,1) Probability the root is in dependent state 0,1 

Root - D P(1,0) Probability the root is in dependent state 1,0 

Root - D P(1,1) Probability the root is in dependent state 1,1 

Discrete: Heterogeneous 
 The discrete heterogeneous model is an experimental model which fits both an independent 

and a dependent model on a branch by branch bases, each branch is assigned one of the two 

models. It can only be used on a single tree with MCMC. The output contains a table “Hetro Model 

Key” which links each node in the tree with a number, each iteration of the chain will contain a map 

string which indicates which model is assigned to which branch. If the map has a 0 the independent 

model is applied to the branch, if the map has a 1 the dependent model is applied. In the same way 

a significant result for the discrete covarion model does not necessarily signal correlated evolution 

but could be two patterns or rates of evolution, restricting the dependent model to the independent 

one can distinguish between these cases. While the model may improve the likelihood the models 

assigned to each branch can be highly variable. The discrete covarion model supports RJ MCMC, to 

reduce the large number of parameters required. 



Local Heterogeneous models of evolution (MultiState and Discrete) 
 The assumption of a homogenous model of evolution may not be suitable for large 

phylogenies, as evolutionary processes may not be constant over long time periods or across a 

diverse range of taxa. BayesTraits allows different models of evolution to be fitted to different parts 

of the tree. Fitting a different model of evolution allows changes in both rates and patterns of 

evolution to be modelled, local transformations can be used to model changes in rates. Fitting a 

different model of evolution estimates a separate transition matrix for a subset of the tree, this can 

be estimated using MCMC or ML. The command “AddPattern” is used to estimate a separate pattern 

of evolution on a node, it takes a name for the pattern and a tag to identify the node on the trees 

(see Tags for creating tags).  

 Below is an example of how to fit a heterogeneous model, using a large bird phylogeny (Jetz, 

Thomas et al. 2012) (http://birdtree.org/) and territory data taken from (Tobias, Sheard et al. 2016), 

it is used purely as an example and not to make a biological point. First calculate the likelihood and 

parameters using a homogenous model, run BayesTraits with the tree file Bird.trees and data file 

BirdTerritory.txt, and the following commands  

1 

2 

ScaleTrees 0.001 

Stones 100 1000 

Run 

The commands select MultiState (1), MCMC (2), use “ScaleTrees 0.001” to scale the branch 

lengths to prevent the rates from becoming small and start the analysis. The stepping stone sampler 

is used with 100 stones and 1000 iterations per stone to estimate the marginal likelihood, the 

analysis is started with the run command. This should produce a marginal likelihood of roughly -1942 

(in BirdTerritory.txt.Stones.txt) and rate parameters (q01 and q10) similar to the ones below.   

 The commands to run a heterogeneous model, where a different evolutionary model is 

fitted to the Passeriformes can be found in the command file “BirdHetCom.txt”, as the tag to define 

the Passeriformes has over 3500 taxa and is too large to include.  

The commands are  

0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24

q01 q10

http://birdtree.org/


1 

2 

ScaleTrees 0.001 

AddTag PasseriformesTag Strigops_habroptila Nestor_notabilis … 

AddPattern Passeriformes PasseriformesTag 

Stones 100 1000 

Run 

 

The run BayesTraits with the trees, data and command file (see Running BayesTraits with a 

command file).  

The first three commands select MultiState model, MCMC and scale the tree by a factor of 

0.001, the fourth command creates a tag called “PasseriformesTag” defined by the supplied list of 

taxa, the fifth command estimates a different pattern of evolution on the node defined by the 

PasseriformesTag, the pattern is called “Passeriformes”, the stepping stone sampler is used to 

estimate the marginal likelihood. This should produce a marginal likelihood of roughly, -1912.4, 

giving a log Bayes Factor of 59.2, suggesting very strong evidence for a heterogeneous pattern of 

evolution within the birds. This is born out in the differences in the rate parameters, the parameters 

estimated in the Passeriformes are different from the rest of the tree. Interestingly fitting a separate 

pattern of evolution alters the estimated ancestral state, from a probability of 0.804 for a 

reconstruction of 1 at the root to 0.995.  



 

Different patterns of evolution can be fitted using maximum likelihood or MCMC, they can 

be used with MultiState or Independent or Dependent discrete models. Parameters with in a pattern 

behave the same as other transition rates, they can be fixed to values, set equal to each other or 

modelled using RJ MCMC.  

Continuous: Random Walk (Model A) ML 
 Start BayesTraits with the tree file “Mammal.trees” and data file “MammalBody.txt”, the 

tree file is a sample of 50 mammal trees and the data is there corresponding body size, the trees and 

data are for illustrative purposes and are not accurate or a good sample. The commands below run a 

basic maximum likelihood Brownian motion analysis, 4 selects “Continuous: Random Walk (Model 

A)”, 2 selects maximum likelihood and the final command starts the chain.  

4 

1 

Run 

 Basic information will be printed followed by a header   

Header  Output 

Tree No The tree number, 1-50 for this data 

Lh Maximum likelihood value for the tree 

Alpha 1 The phylogenetically corrected mean of the data, also the estimated root value 

Sigma^2 1 The phylogenetically corrected variance of the data 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 300 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

q01 q10

q01 - Passeriformes q10 - Passeriformes



Continuous: Random Walk (Model A) MCMC 
 Start BayesTraits with the tree file “Mammal.trees” and data file “MammalBody.txt”, select 

“Continuous: Random Walk (Model A)” (4) and MCMC (2), start the analysis with run 

4 

2 

Run 

 

 Basic information will be printed followed by a header   

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Tree No Current tree number 

Alpha Trait 1 The phylogenetically corrected mean of the data, also the estimated root value 

Sigma^2 1  The phylogenetically corrected variance of the data 

Testing trait correlations: continuous 
 To test if two traits are correlated, the results from two analysis are compared, one in which 

a correlation is assumed (the default) and one where the correlation is set to zero. Run an analysis 

using the tree file “Mammal.trees” and a data file “MammalBrainBody.txt”, containing brain and 

body size data. The commands select “Continuous: Random Walk (Model A)” (4) and MCMC analysis 

(2), the stones command is used to estimate the marginal likelihood using 100 stones and 1000 

iterations per stone. The final command starts the analysis.  
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2 

Stones 100 1000 

Run 

 Basic information will be printed followed by a header   

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Tree No Current tree number 

Alpha 1 The phylogenetically corrected mean of the first trait 

Alpha 2 The phylogenetically corrected mean of the second trait 

Sigma^2 1 The phylogenetically corrected variance of the first trait 

Sigma^2 2  The phylogenetically corrected variance of the second trait 

R Trait 1 2 R correlation between trait 1 and trait 2 

 



 The marginal likelihood is recorded in the last line of the “MammalBrainBody.txt.Stones.txt” 

file, it should be roughly -80.93 

 Rerun the analysis forcing the correlation to be zero using the TestCorrel (TC) command.  
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TestCorrel 

Stones 100 1000 

Run 

The output should be similar except the “R Trait 1 2” value will be 0, the  marginal likelihood 

should be roughly -140.64. The significance of the correlation can be tested by computing a Bayes 

Factor between the two runs, the model that estimates the correlation will be the complex one.  

If the analysis allowing a correlation produced a marginal likelihood of -80.93 and the 

analysis with the correlation fixed to zero gave a marginal likelihood of -146.64, this would lead to a 

log Bayes Factor of 119.42, suggesting they are highly correlated.  

Log BF = 2(log marginal likelihood complex model – log marginal likelihood simple model) 

Log BF =  2(-80.93 - -140.64)   

 Log BF =  119.42 

Continuous: Directional (Model B) MCMC 
The directional model can be used to test if there is a directional change in a traits evolution, 

by testing if a trait is correlated with the root to tip distance of the taxa. Model B cannot be used 

with ultrametric trees as there is no root to tip variation between taxa. A fictional data set 

“MammalModelB.txt” can be used to test if there is a significant directional trend by performing a 

model test between Model A and Model B. If Model B is significant there is signal for a directional 

trend in the data. To test if model B is significant, first run an analysis with the tree file 

Mammal.trees and the data file MammalModelB.txt, the following commands select model A and 

MCMC, the stones command is used to estimate the marginal likelihood using 100 stones and 1000 

iterations per stone and the final command starts the analysis.  

4 
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Stones 100 1000 

Run 

The marginal likelihood, found in the last line of MammalModelB.txt.Stones.txt should be 

roughly 60.5 log units.  



The commands below rerun the analysis using Model B, where a directional trend is 

estimated in the data.  
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Stones 100 1000 

Run 

The marginal likelihood should be roughly 67.28, giving a Log Bayes Factor of roughly 13.56, 

suggesting significance.  

Log BF = 2(log marginal likelihood complex model – log marginal likelihood simple model) 

Log BF =  2(67.28- 60.5)   

 Log BF =  13.56 

Continuous: Regression 
The continuous regression model is used to perform regression analysis, test trait 

significance and predict unknown values. The regression model takes two or more traits, the first 

trait is assumed to be the dependent variable. MammalBrainBodyGt.txt is a data set of mammal 

brain, body and gestation time. Run BayesTraits with the “Mammal.trees” tree file and 

“MammalBrainBodyGt.txt” data. The commands below select the regression model (6) and MCMC 

(2) and the last line runs the analysis.  

2 

6 

Run 

The header will contain.  

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Tree No Current tree number 

Alpha Intercept 

Beta Trait 2 Regression coefficient for trait 2 

Beta Trait 3 Regression coefficient for trait 3 

Var Brownian motion variance  

R^2 R2 -  Coefficient of determination 

SSE Sum of squared error 

SST Total sum of squared 

s.e. Alpha Standard error Alpha 

s.e. Beta-2 Standard error Beta-2 



s.e. Beta-3 Standard error Beta-3 

Testing trait significance  
 There are a number of ways to test if a trait is significant in the regression model, the first is 

to compare marginal likelihood (MCMC) or likelihood ratios (ML) from runs with and without the 

trait. The second is the ratio of the time the regression coefficient crosses the zero point, if a 

regression coefficient is well supported it will not switch from positive to negative, or vice versa.  

Continuous: Estimating ancestral sates and tip values 
 Continuous models can be used to estimate unknown values on the tree, either internal 

nodes or tips. Estimating unknown values is a two-step process, first a distribution of models is 

estimated from available data, secondly the models are used to estimate unknown values. The two-

step process prevents estimated data from affecting the model parameters. Estimating unknown 

values can be used with model A, model B and the regression model but only using MCMC.  

The “SaveModels” command is used to save models to a specified file, the “LoadModels” 

command is used to load the models into BayesTraits. The same model parameters, including tree 

transformations, has to be specified when creating a model file and when estimating unknown 

values, only very basic error checking is implemented.  

Estimating unknown values internal nodes 
 Start BayesTraits with the “Mammal.trees” file and “MammalBody.txt” data. Select model A 

(4) and MCMC analysis (2). Save the models and run the analysis with the commands below, the 

models will be saved into a file called “MamBodyModels.bin” 

 4 

 2 

 SaveModels MamBodyModels.bin 

 Run  

 

 Once the program has finished a file called “MamBodyModels.bin” will be created.  

  

 To estimate data, start BayesTraits with the same tree and data files and use the commands 

below to select model A (4) and MCMC (2), the third line loads the models from 

MamBodyModels.bin, the fourth and fifth lines define two tags called Tag01 and Tag02 (see Tags) 

and the six and seventh lines reconstruct both tags labelling them Node-01 and Node-02 in the 

output.  
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LoadModels MamBodyModels.bin 



AddTag Tag01 Whale Hippo Llama Ruminant Pig 

AddTag Tag02 Mouse Rat Hystricid Caviomorph 

AddMRCA Node-01 Tag01 

AddMRCA Node-02 Tag02 

Run 

 

 

 

 

 

 

 

 

 

The output header will contain  

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Tree No Current tree number 

Model No Current model number from the model file 

Alpha Trait 1 Phylogenetic mean 

Sigma^2 1  Brownian motion variance 

Est Node-02 - 1 Estimated values for Node-02 trait 1  

Est Node-01 - 1 Estimated values for Node-01 trait 1 

 

Interpolation: Estimating unknown values for tips 
 Unknown tip values can be interpolated (estimated) for discrete, multistate and continuous 

models, see (Organ, Shedlock et al. 2007, Organ, Janes et al. 2009) for more information.  

 

 Data for taxa, as well as internal nodes can be estimated. A data file 

“MammalBrainBodyNoTapir.txt” has been created with the data for tapir removed and replaced by 

‘-‘. Start BayesTraits with the “Mammal.trees” tree file and “MammalBrainBodyNoTapir.txt” data 

file. The commands below select the regression model (6) and MCMC analysis (2), save the models 

to a file (MamRegModels.bin) and run the analysis.  
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SaveModels MamRegModels.bin 

Run  



 

 A data file “MammalBrainBodyPredTapir.txt” which contains the tapir body size but with the 

brain size set to “?”. The use of a question mark in the data is used to indicate the value should be 

estimated. Run an analysis using the “Mammal.trees” tree file and 

“MammalBrainBodyPredTapir.txt” data file. Select the regression model (6) and MCMC analysis (2). 

Use the commands below to load the models and run the analysis 
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LoadModels MamRegModels.bin 

Run  

  

 The output will contain a column labelled “Est Tapir – Dep”, with the predicted tapir brain 

size, the predicted brain size should be roughly 2.1 ± 0.15, the actual brain size is 2.2. 

Independent contrast 
 BayesTraits implements a range of independent contrast models (Felsenstein 1973, 

Freckleton 2012), independent contrast offers a significantly faster alternative to Generalised Least 

Squares (GLS) methods for large data sets. Independent contrast models can be run using MCMC or 

ML. Start BayesTraits with the tree file “Mammal.trees” and data file “MammalBrainBody.txt”. The 

commands below run the independent contrast model (7) using MCMC (2)  

7 

2 

Run 

The independent contrast model assumes sites are independent, e.g the covariance is set to zero. 

The output will contain  

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Tree No Current tree number 

Alpha 1 Phylogenetic mean of the first trait 

Alpha 2 Phylogenetic mean of the second trait 

Sigma^2 1 Brownian motion variance for the first trait 

Sigma^2 2 Brownian motion variance for the second trait 

Independent contrast: Correlation 
 The independent contrasts correlation model allows correlations to be tested between two 

traits using the independent contrast framework. 



 Start BayesTraits with the tree file “Mammal.trees” and data file “MammalBrainBody.txt”. 

The commands below are used to select Independent Contrast: Correlation (8) and MCMC (2), the 

stones command is used to estimate the marginal likelihood using 100 stones and 1000 iterations 

per stone and the final command starts the analysis.  
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Stones 100 1000 

Run 

 

 

 

The output will contain  

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Tree No Current tree number 

Alpha 1 Phylogenetic mean of the first trait 

Alpha 2 Phylogenetic mean of the second trait 

Sigma^2 1 *Brownian motion variance for the first trait 

Sigma^2 2 *Brownian motion variance for the second trait 

R Trait 1 2 *The covariance between the first and second trait 

*Due to the independent contrast framework the variance and covariance parameters are 

set to their maximum likelihood values even when using MCMC.  

The log marginal likelihood, found in the last line of MammalBrainBody.txt.Stones.txt, 

should be roughly -79.3 log units.  

 To test a correlation between two traits re run the analysis using the “TestCorrel” (TC) 

command to set the covariance to zero and calculate a Log Bayes Factor. Start BayesTraits with the 

tree file “Mammal.trees” and data file “MammalBrainBody.txt”. The commands below are used to 

select Independent Contrast: Correlation (8) and MCMC (2), the TestCorrel command sets the co-

variance to zero, the stones command is used to estimate the marginal likelihood using 100 stones 

and 1000 iterations per stone and the final command starts the analysis.  

8 
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TestCorrel 



Stones 100 1000 

Run 

The log marginal likelihood, found in the last line of MammalBrainBody.txt.Stones.txt, 

should be roughly -140.6 log units. The significance can be assessed by calculating Log Bayes Factors, 

in this case the complex model assumes the correlation and the simple model sets it to zero.  

 

Log BF = 2(log marginal likelihood complex model – log marginal likelihood simple model) 

Log BF =  2(-79.3 - -140.6)   

 Log BF =  122.6 

 

Independent contrast: regression  
 The independent contrast models supports simple and multiple regression, using ML and 

MCMC. The first trait is assumed to be the dependent variable, subsequent traits are assumed to be 

the independent variables. Run an analysis using the tree file “Mammal.trees” and the data file 

“MammalBrainBodyGt.txt”. Select “Independent Contrast: Regression”, 9 and MCMC 2, and run the 

analysis. The log file will contain   

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Tree No Current tree number 

Alpha *Analytical value of Intercept 

Beta 1 Regression coefficient for trait 2 

Beta 2 Regression coefficient for trait 3 

 

* Due to the independent contrast framework the maximum likelihood intercept value is 

used, calculated from the regression coefficient, even when using MCMC, it is not an estimated 

value.   

Tree transformations, kappa, lambda, delta, OU 
  BayesTraits supports a number of tree transformations including, kappa (κ), lambda (λ), 

delta (δ) and Ornstein Uhlenbeck (OU) for both continuous and independent contrast models. These 

scaling parameters allow tests of the tempo, mode, and phylogenetic associations of trait evolution. 

Kappa, lambda, and delta take the value 1.0 by default, OU takes the value 0. These default values 

assume that the phylogeny and its branch lengths accurately describe a constant-variance random 

walk model. However, if trait evolution has not followed the topology or the branch lengths, these 

values will depart from 1.0. When they do, incorporating them into the analysis of the data (e.g., 



when estimating the correlation between two traits) significantly improves the fit of the data to the 

model. 

 

 

 

 

 

 

 

 

 

Below is a subset of the primates tree, it will be used to demonstrate tree transforms.  

 

Kappa 
The kappa parameter differentially stretches or compresses individual phylogenetic branch 

lengths and can be used to test for a punctuational versus gradual mode of trait evolution. Kappa > 

1.0 stretches longer branches more than shorter ones, indicating that longer branches contribute 

more to trait evolution (as if the rate of evolution accelerates within a long branch). Kappa < 1.0 

compresses longer branches more than shorter ones. In the extreme of Kappa = 0.0, trait evolution 

is independent of the length of the branch, all branch lengths are set to 1. Kappa = 0.0 is consistent 

with a punctuational mode of evolution. Below are examples of the tree transform by a) kappa = 2 b) 

kappa = 0.5 and c) kappa = 0 



 

 

 

 

 

 

 

 

 

 

 

a) Kappa = 2 

 

b) Kappa = 0.5 



 

 

 

 

 

 

 

c) Kappa = 0 

 



Delta 
The parameter delta scales overall path lengths in the phylogeny - the distance from the 

root to the tips, as well as the shared path lengths. It can detect whether the rate of trait evolution 

has accelerated or slowed over time as one moves from the root to the tips, and can find evidence 

for adaptive radiations. If the estimate of Delta < 1.0, this says that shorter paths (earlier evolution in 

the phylogeny) contribute disproportionately to trait evolution - this is the signature of an adaptive 

radiation: rapid early evolution followed by slower rates of change among closely related species. 

Delta > 1.0 indicates that longer paths contribute more to trait evolution. This is the signature of 

accelerating evolution as time progresses. Seen this way, delta is a parameter that detects 

differential rates of evolution over time and re-scales the phylogeny to a basis in which the rate of 

evolution is constant. Below are examples of the tree transform by a) delta = 0.5 and b) delta = 2  

 

 

 

 

 

 

 

 

 

 

a) Delta 0.5 

 



b) Delta 2 

 

 

Lambda  
The parameter lambda reveals whether the phylogeny correctly predicts the patterns of 

covariance among species on a given trait. This important parameter in effect indicates whether one 

of the key assumptions underlying the use of comparative methods - that species are not 

independent - is true for a given phylogeny and trait. If a trait is in fact evolving among species as if 

they were independent, this parameter will take the value 0 and indicate that phylogenetic 

correction can be dispensed with. A lambda value of 0 corresponds to the tree being represented as 

a star or big-bang phylogeny. If traits are evolving as expected given the tree topology and the 

random walk model, lambda takes the value of 1.0. Values of lambda = 1.0 are consistent with the 

constant-variance model (sometimes called Brownian motion) being a correct representation of the 

data. Intermediate values of lambda arise when the tree topology over-estimates the covariance 

among species. Below are examples of the tree transform by a) lambda = 0.75 and b) lambda = 0 

a) Lambda = 0.7 



  

b) Lambda = 0 

 

 

 

 

 

The value of lambda can differ for different traits on the same phylogeny. If the goal is to 

estimate the correlation between two traits then lambda should be estimated while simultaneously 

estimating the correlation. If, on the other hand, the goal is to characterise traits individually, a 

separate lambda can be estimated for each. 



Ornstein Uhlenbeck (OU) 
The Ornstein Uhlenbeck (OU) transform has traditionally been associated with stabilising 

selection, where the OU parameter measures the strength of a return to a theoretical optimum 

(Hansen 1997) this may be due to other factors and care should be taken when using and 

interpreting OU results. OU parameter values of zero correspond to the default branch lengths, 

parameter values >0 are evidence of an OU process. The OU model should only be used with 

ultrametric trees for independent contrast models, the correction for non-ultrametric trees (Slater 

2014) is implemented for GLM. Below are examples of the tree transform by a) OU = 0.05 and b) OU 

= 1, the OU process can produce trees which are very similar to delta transformed trees but the 

interpretation is very different. High values of OU can also produce trees which are similar to lambda 

trees but again the interpretation is very different. 

a) OU = 0.05

 

 

 

 

 

 

 

 

b) OU = 1 



 

 

Tree transformations table 
Parameter Action 0 <1 1 >1 

lambda Assess contribution 

of phylogeny 

Star phylogeny 

(species 

independent) 

phylogenetic 

history has 

minimal effect 

default 

phylogeny 

not defined 

kappa Scale branch 

lengths in tree 

punctuational 

evolution 

stasis in longer 

branches 

default 

gradualism 

longer 

branches 

more change 

delta Scale total path 

(root to tip) in tree 

not defined temporally 

early change 

important 

(adaptive 

radiation) 

default 

gradualism 

temporally 

later change 

(species 

specific 

adaptation) 

OU  default >0  evidence of an  OU process 

Four scaling parameters and their interpretation when applied to trait evolution on a 

phylogeny 

Tree transformations commands 
 

All four parameters can be estimated using ML or MCMC, the syntax for the four parameters 

is the same, either the scaling parameter on its own to toggle its estimation (they are not estimated 

by default) or the scaling parameter followed by a number to fix the parameter to a given value.  

 

The first command estimates lambda, the second fixes it to 0.5 

Lambda 

Lambda 0.5 



 

 

The first command estimates kappa, the second fixes it to 0.5 

Kappa 

Kappa 0.5 

 

The first command estimates delta, the second fixes it to 0.5 

Delta 

Delta 0.5 

 

The first command estimates OU, the second fixes it to 0.5 

OU 

OU 0.5 

 

Model testing, Bayes Factors (MCMC) or Likelihood ratios (ML), can be used to determine if 

a transform is significant or if a value of a transform is significant, e.g. is lambda significantly 

different from 0. 

  



Variable rates model 
 ...... The variable rates model allows the rate of change to vary threw time and identifies areas of the 

tree where the rate of evolution differs significantly, for an in-depth description see (Venditti, 

Meade et al. 2011). The variable rates model can be used with MultiState, Discrete or any of the 

independent contrast models. The variable rates model uses RJ MCMC to identify areas of the tree in 

which the rate of evolution varies significantly. A tree “Marsupials.trees” of roughly 250 marsupials 

and their body sizes “Marsupials.txt” is included. Start BayesTraits with the tree and data file, the 

commands below select the independent contrast model (7) and MCMC (2), the VarRates command 

selects the variable rates option, both burn-in and the number of iterations are increased as reverse 

jump models can be harder to converge and have more parameters than the standard Brownian 

motion models. Because variable rates models are more complex chains may fail to converge, it is 

important to check convergence using multiple chains. When using the variables rates model, taxa 

with missing data should be removed from the tree, see Deleting taxa with missing data, and the 

tree should have only hard polytomies.  
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VarRates 

Burnin 10000000 

Iterations 110000000 

Run 

 The log file will contain  

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Tree No Current tree number 

Alpha 1 Phylogenetic mean of the first trait 

Sigma^2 1 Brownian motion variance for the first trait 

No RJ Local Branch Number of branch lengths scaled using variable rates 

No RJ Local Node Number of nodes scaled using variable rates 

 

 Two additional data files are created, “Marsupials.txt.Output.trees” contains the trees 

scaled by the rate of change, areas which are stretched have an increased rate of change, areas 

which are shrunken have a decreased rate. The file “Marsupials.txt.VarRates.txt” contains a detailed 

description of the changes, the format of the file is, line 1, number of taxa, followed by a unique  

taxa ID and taxa name. The second part is the number of internal nodes, followed by a list of internal 

nodes consisting of a unique node ID, branch length (-1 for root), number of taxa which define the 

node and the list of taxa ID. The third section details the results of the chain, the columns are  

 

 



Header  Output 

It Iteration of the chain 

Lh Likelihood of the chain 

Lh + Prior Likelihood + prior 

No Pram Number of rate changes on the tree 

Alpha Estimated phylogenetic mean 

Sigma^2 Brownian motion  

Alpha Scale Scale of the prior (unchanging, for diagnostics only) 

 For each change of rate of the tree (No Param) there is 

Header  Output 

Node ID The node ID the change is on 

Scale The value of the scale parameter 

Crate It The iteration the change was created on 

Scaler type  The type of the scaler, this can be node, 

branch, kappa, lambda or delta 

  

Bayes Factors calculated from marginal likelihoods can be used to test if there is rate 

variability by comparing a model with and without variable rates.  

A web site that processes the output from a variable rates model is available at 

http://www.evolution.reading.ac.uk/VarRatesWebPP/ 

it can be used to determine how often each node is scaled and by how much.  

 

Note: the interpretation of results from variable rates analysis will differ between 

continuous data types and multi state / discrete data. The interpretation of the results from multi 

state / discrete data is not the same as for continuous data.  

 

 

 

 

 

 

 

 

http://www.evolution.reading.ac.uk/VarRatesWebPP/


Fabric model  
 The Fabric model automatically detects and models directional changes, as well as 

evolvability changes in the tree. The model uses RJ MCMC to detect where these events occur. 

Please see the open access paper (Pagel, O’Donovan et al. 2022) for a full description of the model. A 

tree “Marsupials.trees” of roughly 250 marsupials and their body sizes “Marsupials.txt” is included. 

Start BayesTraits with the tree and data file, the commands below select the independent contrast 

model (7) and MCMC (2), the Fabric command selects the Fabric model, both burn-in and the 

number of iterations are increased as reverse jump models can be harder to converge and have 

more parameters than the standard Brownian motion models. Because Fabric models are more 

complex chains may fail to converge, it is important to check convergence using multiple chains. 

When using the fabric model, taxa with missing data should be removed from the tree, see Deleting 

taxa with missing data, and the tree should have only hard polytomies. A suitable prior should be 

chosen for the directional effects, see below.  

The commands  
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Fabric 

Prior VR_LS_BL weibull 1.1 1.8 

Burnin 1000000 

Iterations 2000000 

Run 

 

 The log file will contain 

Header  Output 

Iteration Current iteration of the chain 

Lh Current likelihood of the chain 

Tree No Current tree number 

Alpha 1 Phylogenetic mean of the first trait 

Sigma^2 1 Brownian motion variance for the first trait 

No RJ Local Node Number of nodes scaled using variable rates 

No RJ LS Betas Number of directional changes 

 

Two additional data files are created, “Marsupials.txt.Output.trees” contains the trees scaled by the 

evolvability changes: regions of the tree that are stretched have increased evolvability, areas which 

are shrunken have a decreased evolvability. The file “Marsupials.txt.VarRates.txt” contains a 

description of the changes, the format of the file is, line 1, number of taxa, followed by a unique taxa 



ID and taxa name. The second part is the number of internal nodes, followed by a list of internal 

nodes consisting of a unique node ID, branch length (-1 for root), number of taxa which define the 

node and the list of taxa ID. The third section details the results of the chain, the columns are  

 

Header  Output 

It Iteration of the chain 

Lh Likelihood of the chain 

Lh + Prior Likelihood + prior 

No Pram Number of rate changes on the tree 

Alpha Estimated phylogenetic mean 

Sigma^2 Brownian motion  

Alpha Scale Scale of the prior (unchanging, for diagnostics only) 

 For each change of rate of the tree (No Param) there is 

Header  Output 

Node ID The node ID the change is on 

Scale The value of the scale parameter 

Crate It The iteration the change was created on 

Scaler type  The type of the scaler, this can be node, 

branch, kappa, lambda, delta or LS_Beta 

 

 

The Fabric model creates two priors, VRNode the prior on the evolvability scalars, and VR_LS_BL the 

prior on the directional changes. When directional changes are assessed against their prior, absolute 

values are used, as directional changes can be negative. The evolvability scalars and directional 

changes can be activated separately using the RJLocalTransform command (see RJLocalTransform 

command). The Fabric command also sets the threshold on the directional changes to -2.0 (see 

RJThreshold command). This imposes a cost of 2 log-units on the directional effects on top of the 

cost of the prior (Pagel, O’Donovan et al. 2022). 

 

A post processor, which transforms the output from the Fabric model into data tables, identifying 

where significant directional and evolvability changes occurred on the tree can be found on the web 

site http://www.evolution.reading.ac.uk/BayesTraits.html . The post processor also includes a tool 

that allows users to compare multiple data tables, to determine the robustness of the results, please 

see the Fabric model paper for more detailed information.  

 

 



Some guidelines for developing prior distributions for directional 

effects 
 

The size and distribution of the directional effects will normally depend upon the particular trait 

studied and this means that it will often be necessary to develop a suitable prior distribution. We 

don’t encourage the use of so-called ‘uninformative’ priors such as the uniform because these can 

lead to poor exploration of the space of the Markov chain. Most pertinently, perhaps, it will seldom 

be the case that one believes, a priori, that all values of the directional effects are equally likely. So, 

we offer here a few guidelines for developing priors for the directional effects. 

 

In the (Pagel, O’Donovan et al. 2022) paper we studied directional effects in logarithmically 

transformed body mass data for the mammals. There we described a Weibull (κ; λ) prior on the 

absolute value of the  𝛽 × 𝑡 effects (Methods) where we set κ = 1.5 (shape) and λ = 1.1 (scale), giving 

a right-skewed distribution with a lower limit of zero, a mode of ≈0.5 and upper range of ≈3. We 

derived this prior from studying the posterior distributions of the 𝛽 × 𝑡 effects from many Markov 

chains with varying prior distributions.  

 

We think this prior distribution is probably a good starting point for logarithmically transformed 

body mass data, regardless of their units (e.g., grams, kilograms), and even in other Classes of 

vertebrate. The units don’t matter in this case because the 𝛽 × 𝑡 effects are sensitive to the change 

along a branch, and the difference between two logarithms is the logarithm of the ratio of their 

difference on an un-logged scale. This means that a 𝛽 × 𝑡 of 3 corresponds to a 1000-fold increase in 

size over a branch of length t, at least when the data are log10 transformed. See (Pagel, O’Donovan 

et al. 2022) for more on this. The units of t do not matter because it is the 𝛽 × 𝑡 that are estimated, 

meaning the 𝛽 will adjust to t. 

 

From this basic body mass prior, we can derive rules of thumb to get a starting point for priors on 

other mass-related variables. For example, brain mass in mammals is commonly believed to change 

with body mass as roughly 𝑏𝑟𝑎𝑖𝑛 𝑚𝑎𝑠𝑠 ≅  𝑏𝑜𝑑𝑦 𝑚𝑎𝑠𝑠3/4. When both variables are logarithmically 

transformed the expectation is that brain mass will scale allometrically against body mass with a 

slope of roughly 0.75. This suggests that a good starting point for a brain mass prior, at least in 

mammals, would be to multiply the scale parameter of the Weibull prior described above by 0.75.  

 

Scaling exponents for other mass-related traits can be found in the literature. For example, brain 

mass is thought to have a different allometry to body mass in the birds, some say 0.56. Snout-vent-

length is often used as a measure of “mass” in indeterminate growth species such as fish. Here, 

𝑙𝑒𝑛𝑔𝑡ℎ ≅  𝑏𝑜𝑑𝑦 𝑚𝑎𝑠𝑠1/3. Life history traits (lifespan, age of maturity) frequently scale 

allometrically with mass according to a 0.25 exponent. Bone characteristics will have allometries. 



Traits like running speeds will probably require starting from first principles as there is no necessary 

relationship of size to speed. 

 

We emphasise that the above is intended as a way to start on designing a prior. As always with 

Bayesian analyses, the prior matters, so it will be useful to try several related priors of varying 

leniency to get a feel as to where the true effects lie. For variables that are not logarithmically 

transformed we suggest a “bootstrapping” (vernacular sense) approach in which various lenient 

priors are tried with progressively narrowing of the prior while paying attention that the prior does 

not itself determine too strongly the resulting posterior. 

 

 

Threshold  
The RJThreshold command allows users to set a threshold value on the reverse jump 

transforms being applied to the tree, such as the directional effect or branch scalars. The command 

takes a transform type and cost, the cost is added to the prior probability of the proposed transform 

when the MCMC chain attempts to add or remove the transform, negative values make the inclusion 

of the transform less probable, positive values make it more probable. Transform types include, 

Branch, Node, Kappa, Lambda, Delta, OU, LandscapeBL 

 

GlobalTrend 
 The GlobalTrend command estimates a parameter, to test for a general trend towards either 

larger or smaller trait values from the ancestor at the root of the tree to the contemporary species in 

lineages that have experienced differing root to tip total evolvability (or total time if the tree 

includes fossil tips). It can be use with a non-ultrametric tree, or with an ultrametric tree where root 

to tip variation is introduced using the variable rates or Fabric model. When the global trend is 

estimated using MCMC, the default prior is a normal distribution with a mean of 0 and a standard 

deviation of 1. 

TestPrior 
The TestPrior command prints a number of random values from a given prior distribution, the 

command takes the name of a prior and the number of values to print.  

 

 Prior Alpha-1 normal 0 1 

 TestPrior Alpha-1 1000 

 



The commands above set the prior on Alpha-1 to a normal with a mean of 0 and a standard 

deviation of 1 and then prints a thousand random values drawn from the prior.  

Geo (Geographical) model  
 Geographical coordinates (longitude and latitude) cannot be modelled using Brownian 

motion due to the spherical nature of the earth. The geo model maps longitude and latitude onto a 3 

dimensional Cartesian coordinates system which can be modelled using Brownian motion. The 

model requires two sites, longitude and latitude, it can only be used with a single tree, as all 

ancestral sates must be simultaneously estimated, the geo model can only be used with MCMC, no 

ML option is available. The tree should have only hard polytomies.  

 A phylogenetic tree of 85 Northeast Bantu languages and their geographical coordinates 

(longitude and latitude) can be found in NortheastBantu.trees and NortheastBantu.txt. Run 

BayesTraits with the tree file and data, the commands below select the Geo model, number 13, and 

MCMC 2, start the model using the run command. The log file will contain standard MCMC 

information, iteration, Lh ect and Alpha which will be fixed to two and scale parameter of roughly 

71. The scale parameter is the variance of the normal distribution, with a mean of 0, that expected 

changes are drawn from.  

13 

2 

Run 

 The Geo model records the estimated ancestral states in the “.AnsStates.txt” file. The file 

assigns a node number to each internal node defined by a list of taxa.  

For example  

Node-00012 G35_Luguru G36_Kami  

 Defines Node 12 by two taxa G35_Luguru, G36_Kami. 

 The second part of the file contains the iteration number, likelihood, parameters and 

estimated longitude and latitude for each internal node.   

Samples of trait data 
 Traditionally comparative methods assume trait values are known without error but traits 

often show within species variation. BayesTraits allows samples of data to be used, results are 

integrated over the sample, see (Organ, Shedlock et al. 2007). There are two types of samples, linked 

where multiple traits with in a taxa are taken from the same source, for example if you had brain 

and body measurements from a sample and could identify what brains measurements came from 

what bodies, unlinked data is where the traits for a taxa are not from the same source.  

 Samples of data are placed in a text file, the format of the data file is, taxa name, followed 

by Linked or UnLinked, then the sample of data separated by comers (,) without spaces or tabs. 



Spaces are used if there is more than one trait.  The example below defines a sample of data for two 

taxa, Taxa1 and Taxa2, the data set has two traits. Taxa1 is linked and the data will be paired, both 

the first and second trait must have the same number of data points, and are sampled together. 

Taxa2 is unlinked, a sample is not available for the first trait a single value is used, four values are 

available for the second trait.  

 Taxa1 Linked 5.5,6.4,4.9 8.3,9.2,7.7 

 Taxa2 Unlinked 8 5.5,9.1,6.6,8.3 

 An example of sample data can be seen in MammalBrainBodySampleData.txt, it has samples 

of data for Hippo and Whale, Hippo has 100 linked samples of brain and body size, Whale has 30 

unlinked samples of brain and 10 samples of body size. Start BayesTraits with the supplied tree and 

data file Mammal.trees and MammalBrainBody.txt, and use the following commands.  
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DistData MammalBrainBodySampleData.txt 

Run  

7 selects Independent Contrast and 2 for MCMC, the command “DistData 

MammalBrainBodySampleData.txt” is used to read in the sample of data, start the chain with “run”. 

The output will have four new columns, Hippo-1 and Hippo-2 that draws from the sample for the 

first and second site for Hippo and the same for Whale.  

Local transformations, kappa, lambda, delta, OU, nodes and LandscapeBL 
Commonly transformations are applied to the whole tree, assuming a single evolutionary 

process, but as trees become large this assumption may not hold. BayesTraits allows local 

transforms to be applied to nodes within trees as well as to the root. Local transforms include, 

kappa, lambda, delta, OU (see Tree transformations, kappa, lambda, delta, OU), as well as node and 

branch scalars. A node transform scales all branches in a node by a value, a branch transform scales 

a single branch. A significant scalar, on a branch suggests a change in the trait value which is 

inherited by all members of the clade, for example there is a significant branch scaler on the nodes 

containing the bats within the mammal tree, as there was a decrease in body size along that branch. 

A significant scalar, greater than one, on a node suggests an increase in trait variance for that group. 

While the OU model can be fitted to nodes of the tree the implementation does not include the 

correction for non-ultrametric trees (Slater 2014). 

 

The syntax to create a local transform (shortcut LT) is  

LocalTransform Name TagList Type Value 



Where “Name” is an identifier associated with the transform, allowing it to be identified in 

the output. Tag List is a list of one or more tags to apply the transform to, BayesTraits can apply the 

same transform to one or more nodes on the tree, for example if an ecological factor is associated 

with a change in the rate of a traits evolution. “Type” is the transform to apply, this can be Node, 

Branch, Kappa, Delta, Lambda or OU. “Value” is optional if you what to set the transform parameter 

to a fixed value, if none is supplied the value is estimated using either ML or MCMC.  

An example of using local transforms applied to the Marsupials tree and body size 

(Marsupials.trees and Marsupials.txt) is given below, this is for illustrative purposes and should not 

be viewed as the correct model. First run a model assuming a homogenous evolutionary process 

using the commands below, selecting Independent Contrasts and MCMC, the stones command is 

used to estimate the marginal likelihood (see Model Testing: Likelihood ratios and Bayes Factors) 

using 100 stones and 1000 iterations per stone, the final command starts the analysis.  

 7 

 2 

Stones 100 1000 

Run 

The estimated marginal log likelihood, found in the last line of the Marsupials.txt.Stones.txt 

file, should be roughly -155.5.  

 

Secondly run a model where a local node transform is applied to the clade that includes 

Petrogale_brachyotis Petrogale_burbidgei Petrogale_concinna, using the commands below.  

7 
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AddTag Tag01 Petrogale_brachyotis Petrogale_burbidgei Petrogale_concinna  

LocalTransform TransNode Tag01 Node 

Stones 100 10000 

Run 

The first two command select Independent Contrasts and MCMC, the third command 

creates a tag called Tag01 that is defined by three taxa, Petrogale_brachyotis Petrogale_burbidgei 

Petrogale_concinna. The fourth command applies a local node transform to the defined tag, the 

stones command is used to estimate the marginal likelihood. The default prior on the node scalar 

called VRNode is a scaled gamma (see (Venditti, Meade et al. 2011)) with an alpha of 1.1 and a beta 

of 1, this can be changed (see Priors). Once the chain has run the Marsupials.txt.Stones.txt file 

should contain an estimate of the marginal log likelihood, roughly -148  

 



Log BF = 2(log marginal likelihood complex model - log marginal likelihood simple model) 

Log BF = 2(-148 - -155.5) 

Log BF = 15 

The Log Bayes factor suggests “very strong evidence” for a rate shift on node.  

The estimated rate scaler is recorded in the output as “TransNode – Node” column of the log 

file, below is a plot of the frequency histogram. This shows that the scale is different from 1, the 

default, this is borne out by the significant Bayes factor.   

 

 

Any number of local transforms can be simultaneously applied to a tree, the transforms can 

be mixed, allowing different parts of the tree to be modelled by different processes. Transforms can 

be nested within each other, when transforms are nested the nodes deeper in the tree (the nodes 

defined by the most taxa) are applied first. This gives the flexibility to create complex models but 

they may be hard to interpret or not have a biological foundation. The resulting scaled trees are 

logged in an output file ending “.Output.trees” this can be used to visualise the transforms and can 

be used for further analysis.  

Reverse Jump local transformations, kappa, lambda, delta, OU, node, branch 

or LandscapeBL 
The method for fitting local transformations, described above, requires the number and 

location of the transform to be known in advance. This is not often the case, the reverse jump local 

transform method can be used to estimate the number and location of transforms within a tree. The 

method is similar to the Variable rates model (see Variable rates model), the variable rates method 

estimates the number and location of branch and node scalars, reverse jump local transform allows 
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the number and location of other evolutionary processes to be modelled, such as kappa, lambda, 

delta, node, branch, LandscapeBL. The RJLocalTransform command turns on the use of reverse jump 

local transforms, it takes a transform type, kappa, lambda, delta, OU, node, branch or LandscapeBL.   

For example 

RJLocalTransform Delta 

Sets reverse jump local transform using delta, more than one reverse jump transform can be 

used at the same time but the interpretation can become complex. By default a node must comprise 

of at least 10 taxa to be transformed, A minimum number of taxa are used to prevent small nodes 

from being transformed, as the transform may fit the data better but may not be interpretable as 

the evolutionary process. This limit can be changed with the SetMinTransTaxaNo command.  

An example of using reverse jump local transform is given below, using the Marsupials tree 

and data set (Marsupials.trees and Marsupials.txt). First run an analysis to establish the marginal 

likelihood for the Brownian motion model, using the commands below.  

7 
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Burnin 1000000 

Iterations 10000000  

Stones 250 10000 

Run 

This should produce a marginal likelihood of roughly -155.5. The number of stones, burn-in 

and iterations have been increased as reverse jump models can be harder to fit. Run a second 

analysis using reverse jump local transform delta, using the commands below.  

7 

2 

Burnin 1000000 

Iterations 10000000  

RJLocalTransform Delta 

Stones 250 10000 

Run 

This should produce a marginal likelihood of roughly -119, a variable rates log file 

“Marsupials.txt.VarRates.txt” will be created identifying each node and recording which nodes have 

had delta transforms applied and their value, the number of deltas will also be recorded in the log 

file. The transformed tree is stored in the nexus tree file “Marsupials.txt.Output.trees”. While the RJ 

delta marginal likelihood is significantly higher than the Brownian motion, this may be due to RJ 



delta acting as a proxy for variable rates, to test if RJ delta is significant on top of variable rates run 

an analysis with both variable rates and RJ delta using the commands below.  

7 
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VarRates 

Burnin 1000000 

Iterations 10000000  

RJLocalTransform Delta 

Stones 250 10000 

Run 

This should produce a marginal likelihood of roughly -110, suggesting the RJ delta is 

significant on top of the variable rates model.  

 

Model Approximate marginal likelihood 

Brownian motion -155.5 

Reverse jump Delta -119.8 

Variable rates -119.3 

Reverse jump Delta + Variable rates -110.4 

 

Threshold  

The RJThreshold command allows users to set a threshold value on the reverse jump 

transforms being applied to the tree, such as the directional effect or branch scalars. The command 

takes a transform type and cost, the cost is added to the prior probability of the proposed transform 

when the MCMC chain attempts to add or remove the transform, negative values make the inclusion 

of the transform less probable, positive values make it more probable. Transform types include, 

Branch, Node, Kappa, Lambda, Delta, OU, LandscapeBL 

 

 

 

 

 



Deleting taxa with missing data 
 Sometimes you may want to remove taxa with missing data from the tree, it is essential for 

variable rates and fabric models that taxa with missing data are removed. The simplest way to 

remove taxa with missing data from a tree is to run a basic maximum likelihood Brownian motion 

model and save the trees, using the commands below.  

7 
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SaveTrees 

Run 

 A file will be created with the extension .Output.trees, with the taxa with missing data 

removed.  

Maximum likelihood search options 
 Under maximum likelihood, estimated parameters which don’t have an analytical solution 

have to be searched for, this can be computationally hard if there are a large number of parameters, 

they trade off with each other or if the search space is complex to traverse. BayesTraits uses the 

NLopt library (Johnson) (http://ab-initio.mit.edu/nlopt). There are a number of options which can be 

set to help parameter optimisation. It is important to run the analysis multiple times to ensure that 

the results are stable, if each run produces different results the options below can be used to modify 

the search algorithm. Limiting the search space using Set Minimum Maximum Rate (SetMinMaxRate) 

and increasing the number of maximum likelihood tries (MLTries) can be effective.  

MLTries (Maximum Likelihood Tries) 
The MLTries command sets the number of times the maximum likelihood algorithm is called, 

10 is the default, only the model with the best likelihood is retained. Increasing this number of tries 

will produce more stable results at the cost of computational time.  

MLAlg (Maximum Likelihood Algorithm)  
The MLAlg command is used to set the optimisation algorithm. It takes the name of the 

algorithm to use, the default is BOBYQA. The different algorithms have different run times and 

behaviours which can vary with data sets and models. For details of the algorithms and references 

see (http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms)  

Name Reference  

BOBYQA M. J. D. Powell, "The BOBYQA algorithm for bound constrained optimization 
without derivatives," Department of Applied Mathematics and Theoretical 
Physics, Cambridge England, technical report NA2009/06 (2009). 

NEWUOA M. J. D. Powell, "The NEWUOA software for unconstrained optimization without 
derivatives," Proc. 40th Workshop on Large Scale Nonlinear Optimization (Erice, 
Italy, 2004). 

NELDERMEAD J. A. Nelder and R. Mead, "A simplex method for function minimization," The 
Computer Journal 7, p. 308-313 (1965). 

http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms


PRAXIS Richard Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, 
1972). (Reprinted by Dover, 2002.) 

COBYLA M. J. D. Powell, "A direct search optimization method that models the objective 
and constraint functions by linear interpolation," in Advances in Optimization and 
Numerical Analysis, eds. S. Gomez and J.-P. Hennart (Kluwer Academic: 
Dordrecht, 1994), p. 51-67. 

SBPLX T. Rowan, "Functional Stability Analysis of Numerical Algorithms", Ph.D. thesis, 
Department of Computer Sciences, University of Texas at Austin, 1990. 

AUGLAG Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint, "A globally 
convergent augmented Lagrangian algorithm for optimization with general 
constraints and simple bounds," SIAM J. Numer. Anal. vol. 28, no. 2, p. 545-572 
(1991). 

 

MLTol (Maximum Likelihood Tolerance)  
The MLTol command sets the algorithm stopping tolerance, how the stopping tolerance is 

used varies between algorithms but it’s commonly used to stop the search. If the likelihood does not 

improve by more than a specified tolerance for a given number of tries the algorithm will terminate. 

Setting the tolerance lower increases accuracy at the expense of run time, the default is 0.000001 

 

MLMaxEval (Maximum Likelihood Maximum evaluations) 
 The MLMaxEval command set the maximum number of times the likelihood function is 

evaluated, if the number of evaluation exceeds this limit the algorithm terminates, this can stop the 

algorithm getting stuck. The default is 20000, using -1 removes any limit.  

 

SetMinMaxRate (Set Minimum Maximum Rate) 
 The SetMinMaxRate command sets the minimum and maximum boundaries for the 

transition rates used by the Multistate and Discrete models. The transition rates are dependent on 

the supplied branch lengths (see Branch lengths), if the branch lengths are in millions of years the 

transition rates will be very small compared to branch lengths that are in expected number of 

substitutions. The default is 1.0e-32 to 100, designed for branch lengths in expected number of 

substitutions. If the run to run results are highly variable reducing the search space range can 

increase accuracy, if the parameters are bumping up against the range increasing the limit may find 

a solution with a better likelihood.  



Model options table 
 

 

1 local transform does not have the same interpretation for MultiState / Discrete data 

2 OU transforms assumes the tree is ultrametric (Slater 2014) 
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Fix (Fossilise) internal nodes  ✔ ✔ ✔ ✔ ✔ ✔ - - - ✔ ✔ - 

Reconstruct Ancestral states   ✔ ✔ ✔ ✔ ✔ ✔ - - - ✔ ✔ ✔ 
Multiple Patters ✔ ✔ ✔ - - - - - - - - - 

Covarion ✔ ✔ ✔ - - - - - - - - - 

Variable Rates  ✔1 ✔1 ✔1 - - - ✔ ✔ ✔ ✔ ✔ ✔ 

Reverse jump model reduction ✔ ✔ ✔ - - - - - - ✔ ✔ - 

Gamma Rate Heterogeneity ✔ - - - - - - - - - - - 

Kappa ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ - 

Lambda  - - - ✔ ✔ ✔ ✔ ✔ ✔ - - - 

Delta - - - ✔ ✔ ✔ ✔ ✔ ✔ - - - 

OU - - - ✔ ✔ ✔ ✔2 ✔2 ✔2 - - - 

Local Kappa ✔ ✔ ✔ - - - ✔ ✔ ✔ ✔ ✔ - 

Local Lambda ✔1 ✔1 ✔1 - - - ✔ ✔ ✔ ✔1 ✔1 - 

Local Delta ✔1 ✔1 ✔1 - - - ✔ ✔ ✔ ✔1 ✔1 - 

Local OU ✔1 ✔1 ✔1 - - - ✔2 ✔2 ✔2 ✔1 ✔1 - 

Local Node ✔1 ✔1 ✔1 - - - ✔ ✔ ✔ ✔ ✔ - 

Local Branch  ✔1 ✔1 ✔1 - - - ✔ ✔ ✔ ✔ ✔ - 

Distribution of tip data - - - ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
Fabric model - - - - - - ✔ - - - - - 



 

Output files  
 BayesTraits produces several output files, there purpose, format and file extensions are 

listed below.  

Extension  File 

.Log.txt Log file contains the model options and output 

.Schedule.txt Schedule from the MCMC chain containing information about mixing 

.AncStates.txt Estimated ancestral sates from the Geographical model 

.VarRates.txt Transforms applied to the tree from the variable rates and local transform 
models 

.Stones.txt Stepping stone sampler file, the last line will contain the estimated log 
marginal likelihood, additional information about the stones is recorded.  

.Output.trees The output trees scaled by variables rates or other transforms, saved in nexus 
format, can be turned on using the SaveTrees command 
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BayesTraits versions 

Quad Precision 
Quad precision is no longer required as the likelihood is scaled internally to prevent 

underflows, this is significantly faster. 

Threaded 
The threaded version of BayesTraits allows the likelihood calculation, the computationally 

intensive part of the program, to be executed over multiple cores, this can speed up the runtime of 

the program. The speed increase is data set and model dependent, and for small trees or simple 

models the parallel version can run slower than the serial version if the overhead associated with the 

threads outstrips the calculation gain. The command “cores” can be used to set how many cores the 

program uses.  

Note: The threaded version of BayesTraits requires additional library’s to be installed, for 

windows the dll file “libiomp5md.dll” must be installed or be in the same directory as the 

executable, it is supplied with the program. For OS X “libgomp” and “libgcc_s” must be installed they 

are available as part of the homebrew gcc install (https://brew.sh) 

OpenCL 
 OpenCL allows computationally intensive operations to be performed on specialised 

hardware, such as graphics cards, which can give large speed increases, especially for big trees, 

typically thousands of taxa. To use OpenCL you need three things, graphics hardware that supports 

OpenCL, an OpenCL driver installed and the OpenCL version of BayesTraits.  

 OpenCL graphics hardware 

 The Khronos group, who oversee the standard, keep a list of OpenCL compatible hardware 

(http://www.khronos.org/conformance/adopters/conformant-products/). Typically, any AMD and 

NVIDA graphics cards purchased in the last couple of year should support OpenCL but please check. 

Each month hundreds of graphics cards are released with different processors, memory and 

interfaces. The web site CompuBench (www.compubench.com) provides a comprehensive 

comparison of OpenCL performance for different graphics cards.   

 It is possible to get over a 40 fold speed increase compared to Version 1, the performance 

increase is heavily dependent on a number of factors, including tree and data size, model type and 

complexity, the underlying hardware both graphics cards and system, and the drivers and operating 

system used. As with the OpenMP version of BayesTraits it is possible for the OpenCL version to run 

slower. 

 OpenCL driver 

 An OpenCL driver is software which provides a level of abstraction between the hardware 

and software, allowing a program written using OpenCL to run on a large number of different 

hardware platforms. The OpenCL driver is supplied by the hardware manufacture, normally AMD or 

NVIDIA, on some systems it comes with the graphics driver and does not need to be installed 

separately. If the OpenCL version of BayesTraits fails to start or reports and error before the run 

starts, suitable graphics hardware or OpenCL driver may be missing.  

http://www.khronos.org/conformance/adopters/conformant-products/
http://www.compubench.com/
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Building BayesTraits from source 
  The source code for BayesTraits is available on the web site and is released under GNU 

General Public License V3. The basic build of BayesTraits requires three libraries, NLOpt a nonlinear 

optimiser, the GNU Scientific Library (GSL) and Linear Algebra Package (LAPACK) or equivalent (MKL, 

ScaLAPACK). The program supports OpenMP and OpenCL if available, the code has been built using 

Visual studios (windows), gcc (Linux) and clang (OSX).  

The command below will build a basic Linux version,  

gcc *.c -O3 -lm -lgsl -lgslcblas -lnlopt -llapack 

the command will vary depending on the name of the libraries installed 

to build the threaded version,  

gcc *.c -O3 -lm -lgsl -lgslcblas -lnlopt -llapack -DOPENMP_THR -fopenmp 

a threaded version of lapack library (such as MKL) should be used.  

 

The command below will build a basic OS X version,  

clang *.c -O3 -lm -lgsl -lgslcblas -lnlopt -framework Accelerate 

clang does not support OpenMP and cannot build the threaded version, the homebrew 

(http://brew.sh/) package manager can be used to install gcc.  

  

http://brew.sh/
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Common problem / Frequently Asked Questions 

1) Problems starting the program  

 Q) Double clicking on the program does not work.  

A) BayesTraits is run from the command line and not by double clicking on it. See 

Running BayesTraits section.  

  

2) Common tree and data errors 

A) Tree must be in nexus format with a valid translate block. Use the example files as a 

template.  

B) Tree descriptions must have numbers and not taxa name in them.  

C) Trees must be rooted.  

D) Trees and data must be encoded using ASCII format not Unicode 

E) The error “Could not load data for taxa X”, this error is caused by a taxa being specified 

in the tree file but not in the data file. Check spelling and taxa numbers 

F) The error “Tree file does not have a valid nexus tag.” Is because a nexus tag is not found 

in the tree file. Possible causes are specifying the data file before the tree file.  

3) “Memory allocation error in file …” 

Error message “Memory allocation error in file …”, is a catch all memory allocation error, the 

two main causes of memory allocation errors are running out of memory, this can be due to 

too many trees in the tree file or a complex memory intensive model. Try running the 

program with a smaller number of trees and simpler models. The second cause of the crash 

is due to programming errors, if you believe this is the case, please send along the tree file, 

data file and commands used.  

 

4) Chain is not mixing between trees.  

This problem can be caused when one tree’s likelihood is significantly better than other 

trees in the sample. Trees are sampled in proportion to their likelihood, if one is much better 

than the rest it will be sample much often. This can be a particular problem with a large 

number of trees when the topology is poorly supported, a chance combination creates a 

much better likelihood preventing the chain from mixing. To test if this is the problem run 

the sample using ML, this will determine if the tree which the chain gets stuck on has the 

best likelihood. Two options are available, the first is to remove the tree from the sample if 

you believe it is anomalous for some reason. The second is to use the Equal Tree command 

to force the chain to spend an equal amount of time on each tree. The equal tree command 

will produce a separate posterior sample of rates, parameters and ancestral states per tree, 

instead of a single set integrated over the sample of trees.  

 

5) Cannot find a valid set of starting parameters. 

A valid set of parameters to start the chain cannot be found. The model may be invalid, the 

combination of restrictions, priors or data may produce an invalid model, for example 
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setting all the transition rates to zero. Try using simpler models, restricting the number of 

model to a single transition rate and slowly building to more complex models.  

6)  Too many free parameters to estimate 

The number of free parameters is limited to 25 or fewer for maximum likelihood. Likelihood 

methods allow parameters to be estimated from data, comparative methods data can be 

limited, typically consisting of one or more sites for a number of taxa. This limits the number 

of parameters which can be accurately estimated from the data. Accurately estimating 25 or 

more parameters would require a vast amount of data. So the number of free parameters 

under ML is limited, if you believe your data can support more parameters please contact 

the authors for this limitation to be removed.  

7) Run to run variation 

It is important to run the same analysis a number of times, to check for convergence when 

using MCMC and to ensure that optimal parameter values have been found when using ML. 

Large differences between runs is often a warning sign, commonly this is because of to many 

parameters for the data to support or the parameters create a deceptive likelihood surface, 

for MCMC this can prevent the chain from converging and / or mixing, for ML different runs 

may produce different results. Multiple runs can help identify if this is a problem, for ML 

analysis increasing the number of maximum likelihood tries (MLT) per tree can help, the 

default of 10 gives a balance between speed and accuracy, increasing this number can help if 

there is large run to run variation but also increases the run time. See Maximum likelihood 

search options for more information and options about searching.  
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Command table 
 The table below lists the commands and gives an overview of them, detailed information is 

available in the Command List section below.  

Command Function 

#  A comment, used for annotating input files 

AddErr Adds values to terminal branch lengths to correct for sampling errors 

AddMRCA Reconstruct a node using the most recent common ancestor method 

AddNode Reconstruct a specific node on a tree if present.  

AddPattern Apply a different pattern of evolution to a subset of the tree 

AddTag Create a tag defining a node 

AlphaZero Set the alpha parameter to zero for continuous models  

BurnIn Set the number of iterations to burn-in the MCMC chain 

CapRJRates Cap the maximum number of estimated rates in an RJ MCMC analysis 

Cores Set the number of cores to use in the threaded version of the program 

CoVarion Use a covarion model for MultiState and discrete 

CustomSchedule Sets the MCMC schedule, selecting the frequency of each operator  

Delta Estimate or fixes delta to a specific value 

DistData Use a sample of data instead of single values 

EqualTrees Run the chain on each tree an equal number of iterations 

EvenRoot Split the branch length equally between the in group and outgroup 

Exit Quit the program 

Fabric Use the fabric model  

Fossil Fix an internal node at a specific value 

Gamma Use gamma rate heterogeneity for MultiState models with multiple sites  

GlobalTrend Fit a global trend parameter  

Help Print a list of options 

HyperPrior Set a hyper prior on a parameter 

HyperPriorAll Set the same hyper prior on all rate parameters 

Info Print the current options 

Iterations Set the number of iterations the chain will run for 

Kappa Estimate or fix kappa to a specific value 

Lambda Estimate or fix lambda to a specific value 

LoadModels Load models from a file 

LocalTransform Transform a node on the tree by scaling a node/branch or using kappa, 
lambda, delta or OU  

LogFile Set the name of the log file 

MakeUM Convert the tree to ultrametric using a simple transform 

MLAlg Specify the maximum likelihood algorithm 

MLMaxEval Specify the number of times the maximum likelihood algorithm can 
evaluate the likelihood  

MLTol Set the maximum likelihood tolerance  

MLTries Set the number of times to call the maximum likelihood optimiser  

NoLh Turn off the likelihood calculation for MCMC, for testing only 

NormaliseQMatrix Normalise the Q matrix, allowing rates to be compared between data sets 

OU Estimate or fix Ornstein–Uhlenbeck to a specific value 

Pis Set the type of base frequencies to use, none, uniform or empirical 

Prior Set the prior on an estimated parameter  

PriorAll Set all the priors on available parameters  
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PriorCats Set the number of categories to discretise the prior distribution into, for 
MultiState and discrete rate parameters, default 100 

Restrict Restrict rate parameters, set them equal to each other or a constant  

RestrictAll Restrict all rate parameters to a given parameter or constant  

RevJump  Use reverse jump to integrate results over possible models 

RevJumpHP Use reverse jump, with a hyper prior, to integrate results over possible 
models 

RJLocalTransform Use reverse jump to apply multiple local transforms (Kappa, Lambda, Delta) 

Run Start the analysis 

Sample Set the sample frequency of the MCMC chain, default 1000 

SaveInitialTrees Save the initial sample of trees  

SaveModels Save the model parameters to a file  

SaveTrees Save the posterior sample of trees, with transforms ect applied 

ScaleTrees Scale the tree by a given value or set the sample to have a mean branch 
length of 0.1 

Schedule Toggle the recording of the schedule in an MCMC chain, default is on 

Seed Set the random seed 

SetMinMaxRate Set the minimum and maximum transition rates, ML only 

SetMinTransTaxaNo Set the minimum size node to apply RJ local transform to, default 10 

Stones Use a stepping stone sampler to estimate the marginal likelihood 

Symmetrical Make the transition matrix symmetrical for MultiState models  

TestCorrel Set the correlation between continuous traits to zero 

TestPrior Test a prior by drawing random values from the distribution 

Threshold  Set the cost of adding / remove revers jump transforms 

Unrestrict Remove a restriction 

VarRates Use the variable rates model 
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Command List 
 

Command: # 

Purpose: Add a comment. 

Shortcut: // 

Parameters: None 

Example: # This is a comment.  

 

Command: AddErr 

Purpose: Add a specified amount of branch length to terminal nodes to account for 

measurement / sampling error 

Shortcut: ER 

Parameters: A text file containing a list of taxa names and amount of branch length to add for 

each taxa 

Example: AddErr TaxaErrorFile.txt  

 

 

Command: AddMRCA 

Purpose: To reconstruct an internal node using the most recent common ancestor approach 

Shortcut: MRCA 

Parameters: A node name and the name of a tag that defines the node.  

Example: AddMRCA Node1 Tag1 

  MRCA Node1 Tag1 

 

 

Command: AddNode 

Purpose: To reconstruct an internal node 

Shortcut: AddN 

Parameters: A node name and the name of a tag that defines the node.  

Example: AddNode Node1 Tag1 

  AddN Node1 Tag1 

 

 

Command: AddPattern 

Purpose: Estimate a different model of evolution on a subset of the tree 

Shortcut: AP 

Parameters: A name to identify the pattern and a tag that defines the MRCA 

Example: AddPattern Pattern1 Tag1 

  AP Pattern1 Tag1 

 

 

Command: AddTag 

Purpose: Create a tag that defines a most recent common ancestor across a sample of trees 

Shortcut: AT 
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Parameters: A name to identify the tag and a list of taxa names that define it 

Example: AddTag Tag1 Taxa1 Taxa2 Taxa3 

  AP Primates Macaca Gorilla Pan Hylobates 

 

Command: AlphaZero 

Purpose: Sets the intercept (alpha) to zero in a regression model 

Shortcut: AZ 

Parameters: None 

Example: AlphaZero  

 

 

Command: BurnIn 

Purpose: To set the number of iterations to burn the MCMC chain in for, use -1 for an infinite 

chain. 

Shortcut: BI 

Parameters: An integer 

Example: BurnIn 50000 

  BI -1 

 

 

Command: CapRJRates 

Purpose: Cap the maximum number of reverse jump rates to use  

Shortcut: Cap 

Parameters: An integer, >0 

Example: CapRJRates 2 

  Cap 1 

 

 

Command: Cores 

Purpose: Set the number of cores to use, results will be model / data set dependent, requires 

a threaded version of the program.  

Shortcut: cor 

Parameters: An integer, >1 

Example: cores 2 

  cor 4 

 

 

Command: CoVarion 

Purpose: Turn on/off the convarion model  

Shortcut: CV 

Parameters: None 

Example: CoVarion 

  CV 
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Command: CustomSchedule 

Purpose: Set a custom schedule for the MCMC chain, the schedule determines how often 

each component of the model is perturbed, for example how often delta is changed 

relative to alpha. It can be used to turn off changes to a parameter. Setting the 

schedule does not have any error checking and should be used with care, for 

example scheduling a variable rates operator when the variable rates option has not 

been set will cause the program to crash.   

Shortcut: CSched 

Parameters: An iteration number to start the custom schedule on followed by 26 frequencies 

corresponding to the following operators 

 

Position Operator 

1 Rates 

2 Covarion  

3 Kappa 

4 Delta 

5 Lambda 

6 RJ split / merge  

7 Hyper prior 

8 Estimated data 

9 Solo tree move 

10 Local transform Add / Remove scalar  

11 Local Transform Move 

12 Local Transform Change Scale 

13 Local Transform Hyper Prior 

14 Change Hetero 

15 Tree Move 

16 OU 

17 Gamma 

18 RJ Dummy Code Add / Remove 

19 RJ Dummy Move Node 

20 RJ Dummy Change Beta 

21 Estimate ancestral sates 

22 Change Local Rates 

23 Data distribution  

24 Time Slice - Time 

25 Time Slice - Scale 

26 Global Rate 

 

Example: CustomSchedule 1000000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  CustomSchedule 500000 0.5 0 0 0.1 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 



79 
 

Command: Delta 

Purpose: Estimate delta or set it to a fixed value 

Shortcut: DL 

Parameters: None to estimate delta, or a number to fix it to a value 

Example: Delta 

  Delta 0.5 

 

 

Command: DistData 

Purpose: Use a sample of data for taxa instead of a single point.  

Shortcut: DD 

Parameters: A file containing the sample of data for each taxa, see Samples of trait data for file 

format.   

Example: DistData SampleDataFile.txt 

 

 

Command: EqualTrees 

Purpose: Force the chain to spend an equal amount of time on each tree in the sample. This 

results in a separate posterior distribution per tree.  

Shortcut: EQT 

Parameters: Number of iterations to burn each tree in for.  

Example: EqualTrees 20000 

 

Command: EvenRoot 

Purpose: Set midpoint rooting for the sample.  

Shortcut: ER 

Parameters: None 

Example: EvenRoot 

 

Command: Exit 

Purpose: Exit BayesTraits without running the analysis 

Shortcut: Quit 

Parameters: None 

Example: Exit 

 

Command: Fabric 

Purpose: Use the fabric model, only valid with the standard independent contrast model.  

Shortcut: Landscape 

Parameters: None 

Example: Fabric 
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Command: Fossil 

Purpose: Fix an internal node to a specific value 

Shortcut: FO 

Parameters: A name, the name of the tag the defines the node and value to fix the node to, see 

Fixing node values / fossilising section above for more information.  

Example: Fossil AnsNode Tag1 AB 

Fossil AnsNode Tag1 1 

 Fossil Base Tag1 0.3234 

 

 

Command: Gamma 

Purpose: Estimate or fix gamma rate heterogeneity  

Shortcut: GA 

Parameters: The number of gamma categories and an optional value to fix the parameter 

Example: Gamma 4 

  Gamma 4 0.5 

 

 

Command: GlobalTrend 

Purpose: Fit a global trend parameter to the model. Only valid for the standard independent 

contrast model 

Shortcut: GT 

Parameters: None 

Example: GlobalTrend  

 

 

Command: Help 

Purpose: Print a list of commands, not all are valid / working 

Shortcut: he 

Parameters: none 

Example: Help 

 

 

Command: HyperPrior 

Purpose: Set a hyper prior on a parameter 

Shortcut: HP 

Parameters: A parameter name, a distribution name, and a range to draw each parameter from 

Example: HyperPrior q01 exp 0 100 

 HP q10 gamma 0 100 0 100 

 

 

Command: HyperPriorAll 

Purpose: Set all priors on rate parameters, to a common hyper prior 

Shortcut: HPAll 

Parameters: A distribution name and range to draw each parameter from 
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Example: HyperPriorAll Beta 0 100 0 50 

  HPAll Exp 0 200 

 

 

Command: Info 

Purpose: Print current options 

Shortcut: In 

Parameters: None 

Example: Info 

 

 

Command: Iterations 

Purpose: Set the number of iterations to run the chain for 

Shortcut: IT 

Parameters: The number of iterations to run the chain for, or -1 for an infinite chain, use Ctrl+C to 

terminate the run.  

Example: Iterations 1000000 

  It -1 

 

 

Command: Kappa 

Purpose: Set the kappa scaling parameter 

Shortcut: KA 

Parameters: None to estimate kappa, or a number to fix it to a specific value 

Example: Kappa  

  KA 0.1 

 

 

Command: Lambda 

Purpose: Set the lambda scaling parameter 

Shortcut: LA 

Parameters: None to estimate lambda, or a number to fix it to a specific value 

Example: Lambda 

  LA 0.8 

 

 

Command: LoadModels 

Purpose: To load models from a model file, see SaveModels 

Shortcut: LM 

Parameters: A model file name 

Example: LoadModels ModelFile.bin 
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Command: LocalTransform 

Purpose: Apply a local transform to an internal node, this could be a node, branch scalar, 

kappa, lambda, delta or OU, See Local transformations, kappa, lambda, delta, OU, 

nodes and . 

Shortcut: LT 

Parameters: The name of the transform, one or more tags to apply the transform to, the type of 

transform and an optional value to fix the transform to, if emitted the transform 

value is estimated.  

Example: LocalTransform Trans1 Tag1 Node 

LocalTransform Trans1 Tag1 Tag2 Tag3 Branch  

LocalTransform Trans1 Tag1 Delta 

LocalTransform Trans1 Tag1 Kappa 3.2 

 

Command: LogFile 

Purpose: Set the name of the log file and other output files, the default is the name of the 

data file.  

Shortcut: LF 

Parameters: The name of the log file 

Example: LogFile Run01 

  LF ModelALambda 

 

Command: MakeUM 

Purpose: Set the branch length to ultrametric using a simple transform  

Shortcut: MUM 

Parameters: None 

Example: MakeUM 

  MUM 

 

 

Command: MLAlg 

Purpose: Specify the maximum likelihood algorithm to use, see MLAlg (Maximum Likelihood 

Algorithm) for more information.  

Shortcut: MLA 

Parameters: Name of the algorithm, valid options are BOBYQA, NEWUOA, NELDERMEAD, MLAlg, 

COBYLA, SBPLX and AUGLAG 

Example: MLAlg MLAlg 

  MLA SBPLX 

 

 

Command: MLMaxEval 
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Purpose: Set the number of times the maximum likelihood algorithm can evaluate the 

likelihood, this can be used to prevent the optimiser getting stuck on local peaks. 

The default is 20000, use -1 to remove this termination criteria. See MLMaxEval 

(Maximum Likelihood Maximum evaluations) for more information 

Shortcut: MLME 

Parameters: Number of times to evaluate the likelihood.  

Example: MLMaxEval 100000 

  MLME -1 

 

 

Command: MLTol 

Purpose: Set the maximum likelihood tolerance, the criteria to stop the optimiser, the default 

is 0.000001 

Shortcut: MLTO 

Parameters: The maximum likelihood tolerance.   

Example: MLTol 0.001 

  MLTO 0.1 

 

 

Command: MLTries 

Purpose: Set the number of times to find the maximum likelihood values, higher values are 

more consistent but take longer to run 

Shortcut: MLT 

Parameters: Number of maximum likelihood tries, default 10. See MLTries (Maximum Likelihood 

Tries) for more information.  

Example: MLTries 35 

  MLT 100 

 

 

Command: NormaliseQMatrix 
Purpose: Normalise the Q matrix, allowing rates to be compared between data sets. A global 

rate is estimated, the rate parameters become relative to each other instead of 
absolute values.  

Shortcut: NQM 
Parameters: None  
Example: NormaliseQMatrix 
  NQM 
 
 
Command: OU 

Purpose: Set the Ornstein–Uhlenbeck scaling parameter 

Shortcut: OU 

Parameters: None to estimate OU, or a number to fix it to a specific value  

Example: OU 

  OU 3.5 
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Command: Pis 

Purpose: Set the state frequencies 

Shortcut: Pi 

Parameters: Set the state frequencies to empirical values (emp), uniform (uni) or not used 

(none). Only valid for MultiState models  

Example: Pis emp 

  Pis uni 

  Pis none 

 

 

Command: Prior 

Purpose: Set the prior for a parameter 

Shortcut: pr 

Parameters: A parameter, a distribution type and parameters, distributions include, gamma, 

uniform, chi, exp, sgamma, lognormal, normal 

Example: Prior alpha1 exp 10 

  Prior q01 gamma 10 5 

  Prior q34 Uniform 0 1 

  Prior OU exp 1 

 

Command: PriorAll 

Purpose: Set the prior for all rate parameters 

Shortcut: PA 

Parameters: A distribution type and parameters, see prior command 

Example: PriorAll Exp 10 

  PriorAll Beta 1 7 

 

 

Command: PriorCats 

Purpose: Specify the number of categories to divide the prior into, default 100, for discrete / 

MultiState models.  

Shortcut: PCat 

Parameters: An integer > 1,  

Example: PriorCats 200 

  PCat 50 

 

 

Command: Restrict 

Purpose: Restrict a rate parameter or parameters to another parameter or a fixed value.  

Shortcut: Res 

Parameters: A list of parameters to restrict, a parameter or fixed value to restrict to.  

Example: Restrict alpha1 beta1 

Restrict alpha1 beta1 alpha2 beta2 
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Restrict beta1 beta2 1.5 

Command: RestrictAll 

Purpose: Restrict all rate parameters to a parameter or fixed value 

Shortcut: ResAll 

Parameters: A parameter or fixed value  

Example: RestrictAll alpha1 

  ResAll 0.75 

 

Command: RevJump 

Purpose: Set a reverse jump analysis to estimate the discrete or MultiState model of evolution 

Shortcut: RJ 

Parameters: A prior and prior parameter 

Example: RevJump exp 10 

  RevJump Gamma 4 20 

  RJ Beta 5.0 2.5 

 

Command: RevJumpHP 

Purpose: Set a reverse jump analysis to estimate the discrete or MultiState model of evolution 

with a hyper prior  

Shortcut: RJHP 

Parameters: A hyper prior 

Example: RevJumpHP exp 0 100 

  RevJumpHP gamma 0 100 0 50 

 

Command: RJLocalTransform 
Purpose: Use reverse jump to apply multiple local transforms (Kappa, Lambda, Delta, Node, 

Branch, LandscapeBL) 
Shortcut: RJLT 
Parameters: Transform type, kappa, lambda, delta, node, branch, landscapeBL 
Example: RJLocalTransform delta 
  RJLT lambda 

 

Command: Run 

Purpose: Run the analysis 

Shortcut: RU 

Parameters: None 

Example: Run 

 

Command: Sample 

Purpose: Set the sample frequency 

Shortcut: SA 

Parameters: An integer > 0 

Example: Sample 1000 

  Sample 250 
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Command: SaveInitialTrees 

Purpose: Save the initial sample of trees, excluding deleted taxa and including internal 

estimated nodes 

Shortcut: SIT 

Parameters: A file name to save the trees to  

Example: SaveInitialTrees InitTree.trees 

  SIT InitTree.trees 

 

Command: SaveModels 

Purpose: Save the models to a file 

Shortcut: SM 

Parameters: A file name to save the models to.  

Example: SaveModels ModelFile.bin 

  SM ModelFile.bin 

 

Command: SaveTrees 

Purpose: Save the sample of trees during analysis, including transforms  

Shortcut: ST 

Parameters: A filename to save the trees to 

Example: SaveTrees STrees.trees 

Command: ScaleTrees 
Purpose: Scale the trees by a given value or set the sample to have a mean branch length of 

0.1 
Shortcut: SCT 
Parameters: None to set the tree to have a mean branch length of 0.1 or a scaler 
Example: ScaleTrees 
  ScaleTrees 0.01 
  SCT 10 
 

Command: Schedule 

Purpose: Toggle the recording of the schedule in an MCMC chain, default is on 

Shortcut: SH 

Parameters: None 

Example: Schedule 

  SH 

 

Command: Seed 

Purpose: Set the random seed 

Shortcut: Se 

Parameters: An integer, > 0, to seed the random number generator from 

Example: Seed 39362 

  Se 483 

 

Command: SetMinMaxRate 
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Purpose: Set the minimum and maximum transition rates, ML only. Rates cannot be smaller 

than 0.00000001, to stop numeric errors. This can help focus maximum likelihood 

searching.  

Shortcut: SMMR 

Parameters: The minimum and maximum transition rates 

Example: SetMinMaxRate 0 1 

  SMMR 5 10 

 

Command: SetMinTransTaxaNo 

Purpose: Set the minimum size node to apply RJ local transforms to, default 10 

Shortcut: SMTTN 

Parameters: The minimum node size to apply an RJ local transform to 

Example: SetMinTransTaxaNo 20 

  SMTTN 5 

 

 

Command: Stones 

Purpose: Initialise the stepping stone sampler 

Shortcut: ST 

Parameters: The number of stones to use and the number of iterations to use each stone for. 

The alpha and beta parameters which specify the beta distribution the stones are 

drawn from can also be supplied.  

Example: Stones 100 10000 

  Stone 100 25000 0.6 8.0 

 

Command: Symmetrical 

Purpose: Make restrictions to create a symmetrical matrix  

Shortcut: SYM 

Parameters: None 

Example: Symmetrical 

  SYM 

 

Command: TaxaInfo 

Purpose: Show taxa names and numbers 

Shortcut: TI 

Parameters: None 

Example: TaxaInfo 

 

Command: TestCorrel 

Purpose: Set the correlation between traits to zero, used for model testing.  

Shortcut: TC 

Parameters: None 

Example: TestCorrel 
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Command: TestPrior 

Purpose: Draw random values from a prior distribution.  

Shortcut: None 

Parameters: A Prior name and number of random values to draw.  

Example: TestPrior Alpha-1 10000 

 

 

Command: RJThreshold 

Purpose: Set a threshold on the RJ Transforms 

Shortcut: RJT 

Parameters: A transform type (kappa, lambda, delta, ou, node, branch, LandscapeBL) and a 

threshold value.  

Example: RJThreshold LandscapeBL -2 

 

 

 

Command: UnRestrict 

Purpose: Remove a parameter restriction 

Shortcut: UNRes 

Parameters: A parameter to un restrict 

Example: UnRestrict q01 

 

Command: UnRestrictAll 

Purpose: Remove all restrictions 

Shortcut: UnResAll 

Parameters: None 

Example: None 

 

Command: VarRates 

Purpose: Use the variable rates model 

Shortcut: VR 

Parameters: None 

Example: VarRates 
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